
CSE 598 - Data Intensive Systems for Machine Learning
Leaving Backpropagation Behind: Forward Gradients for Distributed Private

Learning

Tanaya Lad
tlad2@asu.edu

Vatsal Gaurang Shah
vshah65@asu.edu

Parva Vipul Barbhaya
pbarbha1@asu.edu

Abstract

The aim of this project is to explore the forward gradient
algorithm as an alternative to backpropagation for
distributed machine learning. The forward gradient method
uses forward-mode automatic differentiation and Jacobian
vector products to estimate gradients, without requiring
transfer of raw training data between nodes. A
privacy-preserving framework is proposed where clients
compute local Jacobian vectors and send only these to a
central server for gradient aggregation and model updates.
Experimental evaluation using convolutional and
multilayer neural networks on the MNIST dataset is
outlined to assess the algorithm's performance in terms of
accuracy, training time, and communication overhead
compared to backpropagation baselines in a simulated
distributed setting. The investigation aims to determine the
feasibility and potential benefits of adopting forward
gradients for distributed, privacy-preserving deep learning.
Relevant keywords: Forward Gradient, Distributed
Machine Learning, Jacobian Vector Product
Aggregation.

Problem Investigation

The investigation focuses on the application and efficacy of
the forward gradient algorithm within distributed machine
learning environments. This topic is of great significance as
it addresses critical challenges faced in the realm of
distributed computing, where data is inherently
decentralized across multiple computational nodes. Such
environments are commonplace in real-world applications
ranging from healthcare systems with data privacy
constraints to large-scale industrial setups requiring data
processing across geographically dispersed locations.

Challenges in Distributed Machine Learning
Distributed machine learning presents unique challenges
primarily due to the separation of data and the need for
frequent communication between nodes:
● Communication Overhead: Each node in a

distributed system may need to send and receive

large volumes of data during the training process,
leading to significant communication overhead.

● Synchronization Costs: Ensuring that all nodes are
synchronized in terms of model updates and state
can be both time-consuming and resource-intensive,
potentially leading to bottlenecks.

● Data Privacy Concerns: When training data contains
sensitive information, transferring raw data between
nodes can pose serious privacy risks, making it
crucial to find methods that reduce or eliminate the
need for raw data exchange.

Relevance and Interest
Exploring the forward gradient algorithm in this context is
particularly interesting for several reasons:
● Efficiency in Gradient Computation: Unlike

traditional backpropagation that relies on
reverse-mode differentiation, the forward gradient
approach utilizes forward-mode differentiation,
which can be more efficient in terms of
computational resources when dealing with
functions that have high input dimensionality and
lower output dimensionality.

● Potential for Reduced Communication: By
computing gradients locally and only exchanging
necessary gradient information, the forward
gradient method can significantly reduce the
amount of data that needs to be transmitted between
nodes, thus lowering communication overhead.

● Enhanced Privacy: The forward gradient method
can potentially enhance data privacy since it does
not require sharing of raw data between nodes;
instead, only gradient information or updates are
exchanged.

Broader Implications
The investigation into the forward gradient algorithm is not
just a technical endeavor but also addresses broader
implications for the field of machine learning and
distributed systems:
● Scalability: Successfully implementing and

optimizing this algorithm could lead to more

mailto:tlad2@asu.edu
mailto:vshah65@asu.edu
mailto:pbarbha1@asu.edu


scalable machine learning models that can be
trained efficiently over larger distributed systems.

● Accessibility of Machine Learning: By reducing the
requirements for high bandwidth and intensive
communication, smaller organizations or those with
limited resources could also leverage advanced
machine learning models.

● Innovation in Algorithmic Approaches: Exploring
alternative gradient computation methods like the
forward gradient could pave the way for further
innovations in algorithmic strategies, potentially
leading to new paradigms in machine learning.

Literature Survey

The paper by Baydin et al. [1] presents a method for
computing gradients in neural networks that does not rely
on the traditional backpropagation algorithm, potentially
reducing computational overhead and improving
parallelism. Werbos et al. 's [2] study delves into
optimizing the backpropagation through time algorithm for
training recurrent neural networks, focusing on efficiency
improvements and stability in learning sequences. Zhang et
al. [3] propose a novel approach to train spiking neural
networks using a modified back propagation technique that
accommodates the temporal dynamics of spike sequences,
enhancing learning accuracy and temporal data processing.
"Deep Learning with PyTorch" [4] is a practical guide that
teaches Python programmers how to build, train, and
fine-tune neural networks for applications like cancer
detection, using PyTorch's user-friendly yet powerful tools,
with insights from PyTorch contributors and experts in the
field. The research by Albawi et al. [5] reevaluates the
design of lightweight convolutional neural networks aiming
at maintaining high performance while significantly
reducing computational cost and model size for mobile and
embedded applications. The paper by Jia et al. [6]
introduces a novel Discriminable Squeeze and Excitation
Graph Convolutional Network (D-SEGCN) for
semi-supervised node classification on graphs, which
incorporates a Squeeze and Excitation module to enhance
feature representation and address the issue of
over-smoothing in graph convolutional networks,
demonstrating improved performance on three citation
network datasets. Li et al. [7] reevaluate the design of
lightweight convolutional neural networks aiming at
maintaining high performance while significantly reducing
computational cost and model size for mobile and
embedded applications. The paper by Shi et al. [8]
introduces a communication-efficient method for
distributed deep learning, focusing on reducing the
bandwidth requirements without compromising the
convergence rate or accuracy of the learning process.

Zhang et al. [9] discuss a method for accelerating the
training of deep learning models using distributed data
parallelism that effectively handles the increasing model
sizes and training data volumes. Lin et al. [10] explore a
compression technique for gradients in distributed training
environments that reduces the network communication load
while preserving the essential information for accurate
model updates.

Method Used

The proposed method involves using a privacy-preserving
framework that leverages forward gradient descent in a
distributed environment. The framework outlines steps
from server initialization, client computation involving
Jacobian vector products, to the aggregation of these
vectors at a central server. This method eschews traditional
backpropagation in favor of forward-mode automatic
differentiation, which allows for efficient gradient
computation without needing access to raw training data,
thus preserving privacy.

1. Initialization: Setting the Stage for Distributed
Computation - The first step in implementing the
forward gradient algorithm in a distributed setting is
the initialization phase. During this phase, the
central server plays a crucial role in establishing the
baseline for the entire learning process.

● Distribution of Initial Parameters: The central
server initializes the model by setting up the
initial parameters, which include the weights and
biases of the neural network. These parameters
are crucial as they represent the starting point of
the learning process.

● Random Seed Distribution: Along with the
initial parameters, the server also distributes a
random seed to all participating client nodes. This
seed is vital for ensuring that all nodes generate
the same random perturbation vectors in a
synchronized manner, which is essential for the
consistency and comparability of the
computations performed by each client.

2. Client Computation: Local Processing and Gradient
Estimation - Once the initialization is complete,
each client node begins its local computations,
which are pivotal for the distributed training
process.

● Generation of Perturbation Vectors: Using the
shared random seed, each client generates a
perturbation vector. This vector is used to slightly
alter the input data or the parameters, enabling
the estimation of how changes in inputs affect the



outputs, which is a key aspect of gradient
computation.

● Jacobian Vector Product (JVP) Computation:
Each client uses its local dataset to compute the
Jacobian vector product. The JVP represents the
first derivative of the output with respect to the
input, providing a directional gradient estimate.
This computation is done using forward-mode
automatic differentiation, which is typically more
suitable for functions where the number of input
parameters is less than the number of outputs.

3. Aggregation: Synthesizing Global Updates from
Local Contributions - The final step in the forward
gradient computation process involves the
aggregation of the locally computed Jacobian vector
products at the central server.

● Naive Method: Here, the server sequentially
updates the model parameters by applying each
client's JVP one after the other. This method,
while straightforward, might not be the most
efficient in terms of convergence speed.

● Simple Average: The server calculates the mean
of all received JVPs and uses this average for
updating the model parameters. This approach
assumes equal contribution and influence from all
clients, regardless of their data size or diversity.

● Weighted Average: In this more sophisticated
approach, weights are assigned to each client's
JVP based on factors such as the size of their
local dataset or the variance in their data. This
method aims to optimize the learning process by
giving more significance to potentially more
informative or reliable gradients

Experimental Setup

The experimental design is structured to validate the
effectiveness of the forward gradient algorithm in a realistic
distributed machine learning scenario. By leveraging the
MNIST dataset and a variety of neural network
architectures, the experiments aim to closely mimic
real-world distributed systems. This approach ensures that
findings are applicable and scalable to actual distributed
environments where data and computational resources are
spread across multiple nodes.

Detailed Experimental Setup:
1. Model Architectures - Two primary types of neural

network architectures will be employed:
● Convolutional Neural Networks (CNNs) - These

models are well-suited for handling image data

and will demonstrate the algorithm's performance
on more complex tasks.

● Multilayer Neural Networks (MNNs) - Simpler
than CNNs, these models will allow us to
evaluate the algorithm's effectiveness with
fundamental architectures.

2. Dataset Distribution: The MNIST dataset will be
split into 50,000 training images and 10,000 test
images. To simulate a distributed setting, the
training data will be randomly distributed among
the clients. This distribution mimics the challenges
faced in real-world scenarios where data is not
centrally located but rather dispersed across
different geographical locations.

3. Baseline Comparisons:
● Centralized Backpropagation: A model trained on

the full dataset using traditional backpropagation
will serve as a baseline to compare against the
centralized training approach.

● Decentralized Backpropagation: Additionally, a
decentralized model trained using
backpropagation with periodic averaging among
the nodes will provide insights into how
traditional distributed training stacks up against
the proposed method.

4. Training Procedure:
● Each client will train their model using the

locally available data and compute the necessary
gradients using the forward gradient algorithm.

● After local training, gradients are sent to a central
server where they are aggregated. This step tests
the algorithm's efficiency in handling and
merging information from multiple sources, a
critical aspect of distributed systems.

5. Communication Overhead and Efficiency: An
essential part of the experiments will involve
measuring the communication overhead
specifically, the total volume of data transferred
between the clients and the central server per
training epoch. This metric will help quantify the
efficiency improvements provided by the forward
gradient method in reducing the need for extensive
data transmission, which is a significant bottleneck
in distributed environments.

6. Performance Metrics: The models will be
evaluated based on their accuracy on the MNIST
test set, the total training time per epoch (measured
in wall clock time), and the communication
overhead involved. These metrics will provide a
comprehensive view of the model performance,
efficiency, and practicality.



Dataset Description

Dataset Selection
For this study, the MNIST dataset, which is a widely
recognized benchmark in the machine learning community,
will be utilized. This dataset consists of 60,000 images in
total, divided into 50,000 training images and 10,000 test
images. Each image is a 28x28 pixel grayscale
representation of handwritten digits from 0 to 9. The
MNIST dataset is chosen for its clarity in demonstrating the
effectiveness of machine learning algorithms due to its
moderate complexity and well-understood characteristics.

Distribution Among Clients
To simulate a distributed learning environment, the MNIST
training dataset will be evenly partitioned and distributed
among multiple client nodes. This distribution is intended
to mimic a realistic scenario where data is not centrally
located but is instead scattered across various locations,
each with computational capabilities. This setup tests the
algorithm's ability to handle data spread and ensure
consistency and accuracy in learning from decentralized
data sources.

Data Privacy Considerations
Given the distributed nature of the experiment and the
emphasis on privacy preservation, the MNIST dataset
offers an excellent opportunity to demonstrate the forward
gradient algorithm's capability to train models effectively
without needing access to centralized data. This aspect is
crucial for scenarios where data privacy and locality are
paramount, such as in medical or financial sectors where
data may be sensitive and not transferable due to regulatory
requirements.

Use of Data in Training and Testing
The training phase will involve each client node using its
portion of the MNIST dataset to compute local updates to
the model using the forward gradient method. This method
involves calculating the Jacobian vector product locally,
which is then sent to a central server for aggregation. The
advantage here is that only the necessary computed updates
are transmitted rather than the raw data, significantly
enhancing data privacy.
During the testing phase, the model's performance will be
evaluated using the separate set of 10,000 test images. This
phase is crucial for assessing the generalizability and
accuracy of the trained model across unseen data, which
represents a realistic assessment of how the model would
perform in actual deployments.

Fig 1. System Architecture Diagram

Results

Performance comparison of backpropagation and forward
gradient

Centralized Back Propagation



Centralized Forward Gradient

De-centralized Forward Gradient

Algorithm Performance Overview
1. Centralized Back Propagation: This method showed

stable performance.
2. Centralized Forward Gradient: Similar stability in

performance to centralized backpropagation.
3. De-centralized Forward Gradient: Noted a

significant drop in accuracy and an increase in training
time. This decline is attributed to the high
communication overhead, particularly due to the
serialization and deserialization of model parameters.

Effects of Decentralization
1. Communication Overhead: Major performance

degradation in decentralized settings due to the
overhead from handling data serialization (e.g., using
pickle files).

2. Scaling Benefits: Increasing the number of clients
could potentially enhance accuracy and reduce relative
training time due to parallelization advantages.

Comparative Analysis
1. Speed and Efficiency: No significant speedup was

observed between backpropagation and forward
gradient methods.

2. Model Type Impact:
● Convolutional Neural Networks (CNNs): Saw a

considerable decline in accuracy, possibly due to the
complexity and convergence challenges.

● Multilayer Neural Networks (MNNs): Showed
better performance with the forward gradient
method, benefiting from simpler architectures.

Parameter Aggregation in Decentralized Setting:

CNN:

MNN:

The Weighted Average gained the highest accuracy but it
took more time in comparison in parameter aggregation in
a decentralized setting.

Analysis

The investigation into the forward gradient algorithm
revealed several critical insights into its performance
relative to traditional backpropagation in distributed
machine learning environments:
1. Impact on Model Accuracy and Training Time:
● Centralized Settings: Both the forward gradient

and backpropagation demonstrated stable
performance in a centralized setup. However, no
significant speed advantages were observed for the
forward gradient method.

● Decentralized Settings: The decentralized
implementation of the forward gradient showed a
considerable drop in accuracy and an increase in
training time. This degradation was primarily due to
the high communication overhead involved in
serializing and deserializing model parameters.

2. Differential Impact on Neural Network Architectures:
● Convolutional Neural Networks (CNNs): CNNs

experienced a notable decrease in accuracy under
the forward gradient approach, likely due to the



complex nature of these models which makes them
more sensitive to the perturbations introduced by
the forward gradient method.

● Multilayer Neural Networks (MNNs): In contrast,
MNNs, with their relatively simpler structures,
responded better to the forward gradient method.
This difference underscores the importance of
model architecture in choosing the gradient
computation technique.

3. Communication and Computational Overheads:
● The experiments underscored the significant impact

of communication overhead on the performance of
distributed learning algorithms. The forward
gradient's approach to local computation of
gradients and centralized aggregation can
potentially reduce data transmission volumes, but
the serialization process itself becomes a bottleneck.

● The need for synchronization and the associated
delays in aggregating gradient information from
multiple nodes also contributed to longer training
times in decentralized environments.

4. Parameter Aggregation Techniques: The aggregation
of parameters in a decentralized setting was another
area of focus. The use of a weighted average for
aggregating parameters emerged as a method that,
while time-consuming, resulted in higher accuracy.
This approach indicates a trade-off between
computational time and model performance,
particularly in environments where data is not
uniformly distributed across nodes.

Conclusion

The study underscores the forward gradient method as a
promising alternative to backpropagation, especially in
distributed learning scenarios where data privacy and
communication efficiency are crucial. This method
enhances privacy by allowing the computation of gradients
locally at client sites without needing to transfer sensitive
raw data, making it particularly advantageous for use in
industries like healthcare and finance. Additionally, it
reduces communication overhead by minimizing the
amount of data exchanged between nodes, which is
beneficial in environments with limited bandwidth.
However, the performance of the forward gradient method
varies significantly with the complexity of the neural
network model and the specific configurations of the
distributed system. It tends to perform better with simpler
architectures such as Multilayer Neural Networks due to
their reduced sensitivity to the noise introduced by gradient
estimations. Despite these benefits, challenges such as
increased computational demands and potential accuracy
losses in decentralized settings highlight the need for

further refinement and optimization of the method,
particularly in terms of effective parameter aggregation and
adaptation to diverse network architectures.

Future Work

1. Algorithm Optimization: Further research will focus
on optimizing the forward gradient calculation and
aggregation methods to enhance performance and
reduce computational and communication overhead
even further.

2. Broader Application Scope: Expanding the testing
framework to include more complex datasets and
different types of neural network architectures to
validate the algorithm's applicability and performance
in a broader range of scenarios.

3. Integration with Other Privacy - Enhancingn
Technologies: Combining the forward gradient
approach with technologies like federated learning and
differential privacy could potentially open up new
avenues for highly secure and efficient distributed
machine learning.

The exploration of forward gradients in distributed settings
not only challenges traditional approaches but also provides
a foundation for future innovations in machine learning that
could transform how data is processed and utilized across
diverse and large-scale environments. This research could
lead to significant advancements in making machine
learning more adaptable, privacy-focused, and efficient in
real-world applications.

References

[1] Baydin, A.G., Pearlmutter, B.A., Syme, D., Wood, F.
and Torr, P., 2022. Gradients without backpropagation.
arXiv preprint arXiv:2202.08587.
[2] Werbos, P.J., 1990. Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE, 78(10),
pp.1550-1560.
[3] W. Zhang and P. Li, "Temporal spike sequence learning
via backpropagation for deep spiking neural networks," in
Advances in Neural Information Processing Systems, vol.
33, 2020. [4] Eli Stevens, Luca Pietro Giovanni Antiga, and
Thomas Viehmann, Deep Learning with PyTorch,
Manning, 2020.
[5] S. Albawi, T. A. Mohammed, and S. Al-Zawi,
"Understanding of a convolutional neural network," in
2017 International Conference on Engineering and
Technology (ICET), Antalya, Turkey, 2017, pp. 1-6.



[6] N. Jia, X. Tian, Y. Zhang, and F. Wang,
"Semi-Supervised Node Classification With Discriminable
Squeeze Excitation Graph Convolutional Networks," in
IEEE Access, vol. 8, pp. 148226-148236, 2020.
[7] K. Li et al., "Rethinking Lightweight Convolutional
Neural Networks for Efficient and High-Quality Pavement
Crack Detection," in IEEE Transactions on Intelligent
Transportation Systems, vol. 25, no. 1, pp. 237-250, Jan.
2024.
[8] S. Shi et al., "Communication-Efficient Distributed
Deep Learning with Merged Gradient Sparsification on
GPUs," in IEEE INFOCOM 2020 - IEEE Conference on
Computer Communications, Toronto, ON, Canada, 2020,
pp. 406-415.
[9] X. Zhang, C. Zhang, and M. Jiang, "Distributed Data
Parallel Training Based on Cumulative Gradient," in 2022
2nd International Conference on Computer, Control and
Robotics (ICCCR), Shanghai, China, 2022, pp. 202-206.
[10] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally,
"Deep gradient compression: Reducing the communication
bandwidth for distributed training," in Proc. of International
Conference on Learning Representations, 2018.


