
Comparative Study of TensorFlow and PyTorch on
Single and Distributed Systems

Jenna Cooley

1218701263

Venkata Naga Aditya Datta

Chivukula

1227267290

Archit Agrawal

1229565261

Introduction

This paper investigates the comparative performance of TensorFlow and PyTorch, two dominant
deep learning frameworks, in the domain of sentiment analysis, a cornerstone of Natural
Language Processing (NLP). The central focus lies in evaluating the efficiency and scalability of
each framework within two distinct computational environments: single-processor systems and
distributed multiprocessor configurations. Sentiment analysis, the process of classifying textual
data based on its emotional sentiment, can be computationally demanding. As NLP applications
continue to evolve in complexity and scale, selecting an appropriate framework becomes
paramount for maintaining efficiency and cost-effectiveness.

The significance of this comparative analysis stems from the widespread adoption of TensorFlow
and PyTorch within the deep learning landscape. Both frameworks boast extensive user bases
across academia and industry. The insights gleaned from this investigation can empower a broad
spectrum of practitioners who rely on these frameworks for their NLP endeavors. By
meticulously evaluating performance across single-processor and distributed multiprocessor
setups, this study aims to illuminate the relative strengths and weaknesses of each framework in
scenarios that necessitate scalability and flexibility. The findings hold the potential to
significantly impact research and commercial applications, guiding developers towards more
efficient resource allocation and expedited training times. Ultimately, this analysis seeks to
deliver a comprehensive assessment that can contribute to the development of more efficacious
and scalable solutions within sentiment analysis and related NLP domains.

Literature Survey

Sentiment Analysis [1] is an important application of NLP which plays a crucial role in social
nets analysis [2] and survey polls [3] during elections. In the early days, methods like cbow and
skip gram were used to generate embeddings [4] and later, deep learning approaches like RNN
[5], LSTM [6], etc. were employed for the same task. With the rise of transformers [7], models
like BERT have shown prominence [8] in industry standard benchmarks like sst2 from GLUE
[9]. Though foundational models like LLMs like GPT, Llama, mistral, etc. prove dominance in



generative AI but do not produce SOTA on downstream NLP tasks where models like DeBERTa
V3 fare the best [10]. Hence, training metrics and information of such models on downstream
NLP tasks like sst2 proves to be important data to analyze. Now, one can choose different
frameworks for analyzing but, two main important frameworks are TensorFlow [11] and PyTorch
[12].

Figure 1: Framework adaption

As seen above in Figure 1, the most relevant frameworks to examine are PyTorch and
TensorFlow. With increase in dataset size, distributed training is now the goto approach.
Distributed Data Parallel [13] is one such approach that was introduced in early days but proves
to be the best when the model size is not big enough for the processor but the dataset is huge.
Dataset is divided into chunks and the model is copied on all the GPUs. Each model copy is
trained simultaneously on different chunks of the data and the gradients are accumulated to get
updated. This strategy is available in both TensorFlow and PyTorch and serves as a good
comparison metric for the analysis.

Methods

The purpose of the project was to compare the performances of TensorFlow and PyTorch in
single and distributed systems. The data will be retrieved from GLUE benchmark with proper
tokenization applied using the default tokenizer for PyTorch and TensorFlow. Each model will be
trained separately with a single GPU instance and multi GPU instance. The results will then be
compared to evaluate which model performs the best. A standard comparison of model
performance will be conducted, measuring accuracy by calculating the proportion of correct
predictions over total number of predictions, employing metrics such as F1 score, precision and
recall.

Setup



The project was set up to compare TensorFlow and PyTorch for sentiment analysis, using
different types of computer setups. Here's how we organized everything:

1. Google Colab for single-processor tasks: We chose Google Colab because it's easy to use and
Google Colab provides access to GPUs, which can significantly speed up the training of deep
learning models. The standard Google Colab GPU provides NVIDIA T4 Tensor Core GPU with
12 GB of RAM and 12GB of GPU memory.

2. Kaggle for multi-processor tasks: We used Kaggle for tasks that needed more than one GPU
because it provides 2 GPUs with the same configuration as Google Colab free of cost. This
helped us see how each framework, TensorFlow and PyTorch, performs when scaled up and
using more resources. Kaggle's setup was crucial for testing how well each framework could
handle large-scale operations and have a common hardware configuration for comparing the
model’s performance.

3. Weights & Biases for monitoring: To keep track of everything like how well the models were
performing and how much computer resources were consumed, we used a tool called Weights &
Biases. It let us log detailed information and watch what was happening in real-time, which was
important for comparing TensorFlow and PyTorch in different situations.

By using Google Colab, Kaggle, and Weights & Biases, we created a consistent and reliable way
to study how TensorFlow and PyTorch work in both single and distributed systems. This setup
helped us thoroughly test and compare the performance, scalability, and efficiency of both
frameworks in sentiment analysis under different configurations.

Dataset

This study employs the Stanford Sentiment Treebank (SST-2) dataset, a portion of the GLUE
benchmark commonly used for sentiment analysis tasks. SST-2 consists of labeled sentences
from movie reviews, with each sentence assigned a sentiment class: positive, negative, or
neutral. utilized this dataset to train and evaluate sentiment analysis models within the
TensorFlow and PyTorch frameworks.

Results



Table 1: Metrics Comparison

Time Comparison
PyTorch TensorFlow 

1 GPU 2 GPU 1 GPU 2 GPU
Average Epoch

Runtime(seconds) 560 610 980 1200

Table 2: Time performance comparison

Figure 2: Pytorch GPU utilization comparison in 1 GPU(left) and 2 GPU(right)

Metrics
Comparison

PyTorch TensorFlow 

1 GPU 2 GPU 1 GPU 2 GPU

Accuracy 92.08% 92.43% 91.51% 92.43% 

F1 Score 92.34% 92.70% 91.57% 92.66% 

Precision 91.03% 91.98% 92.62% 91.44% 

Recall 93.69% 94.37% 90.54%  93.91% 



Figure 2: TensorFlow GPU utilization comparison in 1 GPU(left) and 2 GPU(right)

Conclusion

With increasing model and data sizes, distributed training becomes crucial and each second
saved on training can potentially save millions of dollars in cost and reduce carbon emissions
effectively. In this work it is shown that PyTorch has better training time (almost half) that that of
TensorFlow. It is also evident that data parallelization increases training time by approximately
30% with negligible amount of increase in accuracy. This implies that for the sst2 task of GLUE,
BERT produces better performance than that of distributed setting. Hence it is advisable that if
training data is not large enough, it is better to train in a single GPU environment and use
multi-GPU settings otherwise. More concrete research and analysis can be done on remaining
tasks of GLUE so that better statistical evidence can be witnessed for the same.

Future work

Looking towards potential further implementation of our research, we can see a few avenues to
pursue. One would be to test on a larger range of GPUs, to collect more data in discovering
whether there is more or less difference between and within systems when a larger number of
GPUs are used. Another way to extend the comparison would be to include more models to see
the interaction with smaller or larger datasets.

Additional work could be conducted to include a wider range of frameworks, such as MXNet or
Velox. Unfortunately for the scope of this study, there was not enough time to dedicate to
extending the scope to less popular frameworks, but more specific study can be conducted to
look at a broader range of libraries, to see the state of progress with multi-GPU and single-GPU
efficiency and scalability.



References

[1] Medhat, W., Hassan, A. and Korashy, H., 2014. Sentiment analysis algorithms and applications: A
survey. Ain Shams engineering journal, 5(4), pp.1093-1113.

[2] Freeman, L., 2004. The development of social network analysis. A Study in the Sociology of Science,
1(687), pp.159-167.

[3] Chaudhry, H.N., Javed, Y., Kulsoom, F., Mehmood, Z., Khan, Z.I., Shoaib, U. and Janjua, S.H., 2021.
Sentiment analysis of before and after elections: Twitter data of US election 2020. Electronics, 10(17),
p.2082.

[4] Xiong, Z., Shen, Q., Xiong, Y., Wang, Y. and Li, W., 2019. New Generation Model of Word Vector
Representation Based on CBOW or Skip-Gram. Computers, Materials & Continua, 60(1).

[5] Agarwal, A., Yadav, A. and Vishwakarma, D.K., 2019, May. Multimodal sentiment analysis via RNN
variants. In 2019 IEEE International Conference on Big Data, Cloud Computing, Data Science &
Engineering (BCD) (pp. 19-23). IEEE.

[6] Li, D. and Qian, J., 2016, October. Text sentiment analysis based on long short-term memory. In 2016
First IEEE International Conference on Computer Communication and the Internet (ICCCI) (pp.
471-475). IEEE.

[7] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and
Polosukhin, I., 2017. Attention is all you need. Advances in neural information processing systems, 30.

[8] Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

[9] Wang, A., Singh, A., Michael, J., Hill, F., Levy, O. and Bowman, S.R., 2018. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461.

[10] He, P., Gao, J. and Chen, W., 2021. Debertav3: Improving deberta using electra-style pre-training
with gradient-disentangled embedding sharing. arXiv preprint arXiv:2111.09543.

[11] Abadi, M., 2016, September. TensorFlow: learning functions at scale. In Proceedings of the 21st
ACM SIGPLAN international conference on functional programming (pp. 1-1).

[12] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L. and Desmaison, A., 2019. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32.

[13] Li, H., Kadav, A., Kruus, E. and Ungureanu, C., 2015, April. Malt: distributed data-parallelism for
existing ml applications. In Proceedings of the tenth European conference on computer systems (pp.
1-16).


