
Comparative Analysis of Forward Grad and
Backpropogation

Nisarg Patel
ID: 1229572060

Arizona State University
Tempe, USA

npate129@asu.edu

Anuj Abhay Joshi
ID: 1229935826

Arizona State University
Tempe, USA

ajosh104@asu.edu

Rahil Ashish Shah
ID: 1225475355

Arizona State University
Tempe, USA

rshah72@asu.edu

Abstract—This study investigates the performance of back-
propagation and forward gradient optimization methods for
training deep neural networks on image classification tasks,
using popular datasets like MNIST and Fashion-MNIST, with
architectures including VGG-16 and custom CNN. While for-
ward gradient offers a simpler implementation, backpropagation
generally achieves lower train and test errors. The difference is
more pronounced for custom CNN and CIFAR-10, where forward
gradient performs poorly. Despite similar training times, the
forward gradient method’s reliance on randomly selecting a di-
rectional vector may not always lead to optimal results compared
to backpropagation’s full gradient information. This suggests
that while forward gradient may be suitable for applications
prioritizing simplicity, backpropagation remains more effective
for minimizing loss and achieving better performance . [2]

Index Terms—Backpropogation, Forward Gradient, Deep neu-
ral networks, Optimization methods

I. INTRODUCTION

The comparison between backpropagation and forward gra-
dient methods holds significant interest due to their funda-
mental roles in training deep neural networks, which are the
backbone of modern machine learning applications. Back-
propagation has long been the cornerstone of gradient-based
optimization in neural networks, facilitating efficient compu-
tation of gradients for weight updates. However, its memory
and computational requirements pose challenges, prompting
exploration into alternative approaches. The forward gradient
method, proposed as a potential solution, offers simplicity
and efficiency by computing gradients through forward-mode
differentiation. Understanding the comparative effectiveness
of these methods can lead to advancements in training tech-
niques and enhance the performance of deep learning models
across various tasks. The paper ”Can Forward Gradient Match
Backpropagation?” [3] assesses the performance of forward
gradient methods versus backpropagation in training neural
networks, specifically focusing on the ResNet-18 architecture
using the CIFAR-10 dataset. It investigates various combina-
tions of gradient targets and guesses, significantly utilizing lo-
cal gradients from auxiliary losses to enhance the directionality
and efficiency of the forward gradient method, thus aiming to
reduce the typical variability associated with random gradient
directions.

II. OBJECTIVES

The research aims to address the following specific
objectives and questions:
1. To compare the performance of backpropagation and
forward gradient methods in training deep neural networks
on image classification tasks.
2. To evaluate the impact of optimization methods on training
efficiency, including computational resources and convergence
rates.
3. To investigate the suitability of forward gradient as an
alternative to backpropagation in terms of simplicity, accuracy,
and scalability.
4. To assess the generalizability of findings across different
datasets and network architectures, providing insights into
the robustness and applicability of optimization techniques in
diverse contexts.

III. PROBLEM DESCRIPTION

The primary problem under investigation is the efficiency
and effectiveness of optimization methods in training deep
neural networks for image classification tasks. Backpropaga-
tion, while widely used, faces limitations in terms of memory
consumption and computational complexity, particularly for
large-scale models and datasets. The forward gradient method
emerges as a potential solution, offering a simpler approach
that bypasses the need for backward error propagation. Under-
standing the comparative strengths and weaknesses of these
methods is crucial for advancing the field of machine learning
and addressing the growing demand for efficient and scalable
training techniques.

This research investigates the comparative performance of
backpropagation and forward gradient methods in training
deep neural networks for image classification. The signifi-
cance of this study lies in its potential to identify alternative
optimization approaches that mitigate the computational and
memory challenges associated with traditional backpropaga-
tion. By evaluating the efficiency, accuracy, and scalability
of optimization methods across various datasets and network
architectures, this research contributes to the development of
more robust and scalable training techniques, advancing the



capabilities of deep learning systems in real-world applica-
tions.

IV. LITERATURE SURVEY

The solution to the limitations posed by backpropagation
involves the utilization of forward mode differentiation ex-
clusively, foregoing the traditional backward error propaga-
tion within neural networks. To comprehend this solution,
we delved into the survey paper ”Automatic Differentiation
in machine learning: a survey” [1] by Baydin et al.. This
survey provided a comprehensive overview of automatic dif-
ferentiation (AD) techniques, delineating their mathematical
underpinnings and relationship to conventional calculus and
numerical optimization. It elucidated various AD algorithms,
including forward-mode, reverse-mode, and mixed-mode AD,
while detailing the implementation specifics of forward-mode
AD, such as employing dual numbers to represent derivatives
and utilizing the chain rule for computing derivatives of
composite functions.

The paper further discussed the advantages and drawbacks
of forward-mode AD, highlighting its efficacy in computing
derivatives of scalar functions with multiple inputs but its
limited scalability for vector-valued functions. Additionally,
it provided insights into the implementations of different
differentiation methods, encompassing backpropagation and
forward gradient.

In their paper titled ”Gradients without Backpropagation,”
Baydin et al. proposed a novel approach for gradient com-
putation that circumvents the reliance on backpropagation.
Acknowledging the computational and memory constraints
associated with backpropagation, the authors aimed to devise a
more efficient and scalable alternative. Their proposed method
hinges on the concept of directional derivatives, which can be
precisely and effectively computed using the forward mode.
Termed the ”Forward Gradient,” this formulation offers an
unbiased estimate of the gradient, obtainable in a single
forward pass of the function. The Forward Gradient presents a
viable and scalable substitute for backpropagation in gradient
computation, particularly in the realm of large-scale deep
learning models.

The authors substantiated the efficacy of their approach
through experiments on various benchmark problems, in-
cluding deep neural network training and partial differential
equation solving. Their findings underscored that the Forward
Gradient method can yield comparable or superior perfor-
mance to backpropagation, all the while offering enhanced
efficiency and scalability.

V. PROPOSED SOLUTION

The forward gradient method has emerged as a prominent
approach for gradient computation within the field of machine
learning, garnering increasing attention among researchers.
Originally proposed by Baydin et al. in 2022, this technique
leverages the concept of directional derivatives computed via
the forward mode.

Fig. 1. Algorithm as described in the paper

In order to grasp the essence of the forward gradient method,
it is imperative to grasp the notion of the directional deriva-
tive. Within mathematical contexts, the directional derivative
represents the rate of change of a function along a specified
direction. It furnishes insights into how the function alters
in alignment with a given vector, and its computation entails
the utilization of partial derivatives relative to each coordinate
direction.

The forward mode, on the other hand, constitutes a method-
ology within automatic differentiation aimed at determining
the partial derivatives of a function concerning each input
variable.

The crux of the forward gradient method involves an initial
step of selecting a random vector, denoted as v, followed by
the computation of both the function f(θ) and its directional
derivative concerning θ utilizing the forward mode. Subse-
quently, the directional derivative is then scaled by the random
vector v to yield the forward gradient. This iterative process
offers a streamlined means of approximating gradients, thereby
facilitating efficient optimization techniques within the domain
of machine learning.

The forward gradient method offers a notable advantage
in its simplicity relative to alternative gradient computation
techniques, like backpropagation. Its streamlined process en-
tails minimal computational overhead, involving straightfor-
ward calculations. This simplicity not only facilitates ease
of implementation but also renders it particularly valuable in
scenarios where computational resources are constrained. The
figure below illustrates the straightforward implementation of
the forward gradient method, highlighting its accessibility and
utility in practical applications.

VI. EXPERIMENTS

A. Setup

Experiments were performed utilizing the Google Colab
platform as our computational environment. Google Colab
offers access to GPUs, enhancing the efficiency of training



Fig. 2. Code snippet

deep learning models. The standard GPU configuration in
Google Colab features the NVIDIA T4 Tensor Core GPU,
equipped with 12 GB of RAM and 12GB of GPU memory.

B. Neural Network Architectures

We used two custom created neural networks - a fully
connected NN(Neural Network) and a CNN(Convolutional
Neural Network). The architectures are described in detail in
figures I and II.

C. Datasets

To evaluate the performance of the forward gradient method
compared to backpropagation, we conducted experiments us-
ing two datasets: MNIST and Fashion MNIST.

MNIST comprises 60,000 28x28 grayscale images depicting
handwritten digits ranging from 0 to 9. Fashion MNIST con-
sists of 70,000 grayscale images depicting various categories
of clothing items, such as T-shirts, trousers, dresses, and shoes.
Each image in Fashion MNIST is also 28x28 pixels in size
with a single channel.

For both datasets, we randomly partitioned the data into
training and validation sets using an 80:20 ratio. Subsequently,
we trained the models on the training data and evaluated their
performance using the validation data.

D. Experimental Procedure

The VGG16 and ResNet18 models were trained on the
MNIST and Fashion MNIST datasets, employing both back-
propagation and forward gradient techniques for 100 epochs.
Throughout training, the cross-entropy loss function and the
Adam optimizer with a learning rate of 0.001 were utilized.
We built our code on the top of Pytorch library. We utilized
the in-built functions [4], and implemented forward gradient
algorithm using that.

Across all three datasets, a consistent batch size of 64
was employed. Training proceeded for 100 epochs for each
model, with training and validation errors logged after each
epoch. Additionally, the time taken to train each model and the
GPU memory usage during training were recorded for further
analysis.

We aimed to conduct a comprehensive quantitative analysis
of the distinctions between backpropagation and forward gra-
dient methods. To achieve this, we selected four key metrics
for evaluation: -
1. GPU Memory
2. Training Loss
3. Time taken per epoch
4. Final accuracies

We generated graphs for the above metrics to visually
compare the two methods. The results are explained in the
following section.

VII. RESULTS

The experiments show that the forward gradient approach
exhibits a consistently lower training loss as compared to
the traditional backpropagation method, suggesting a more
efficient error minimization throughout the learning epochs.
Moreover, the test accuracy achieved under the forward gra-
dient scheme is marginally higher, which indicates a superior
generalization capability on unseen data. This is particularly
evident in the plateauing of the learning curves, denoting a
convergence towards an optimal set of parameters.

In terms of computational efficiency, the forward gradient
approach significantly outperforms its counterpart in both
batch time and samples per second metrics. The batch time for
the forward gradient remains substantially lower and consistent
throughout the training process, while the samples per second
metric indicates a higher throughput, emphasizing the forward
gradient method’s potential for scalability in larger network
architectures and datasets.

Lastly, the learning rate trajectories for both methodologies
exhibit a sharp decline, although the forward gradient approach
achieves stabilization with a more gradual descent, which
might contribute to the improved accuracy and loss perfor-
mance by avoiding drastic fluctuations in parameter updates.

These findings suggest that the forward gradient method,
when applied to neural network training on datasets such
as MNIST and FashionMNIST, offers notable improvements
in terms of both model performance and computational effi-
ciency.

VIII. CONCLUSION AND FUTURE WORK

The conducted experiments offer a compelling narrative
about the potential of the forward gradient method in opti-
mizing neural networks for image classification. The forward
gradient consistently outperformed traditional backpropagation
in terms of reducing training errors, which directly translates
to a more effective learning process. The slight edge in
test accuracy provided by the forward gradient method also
suggests its superior ability to generalize and apply its learning
to new data. This is corroborated by the flattening of the
learning curves, indicative of reaching optimal adjustments
swiftly.

The efficiency of the forward gradient is further highlighted
by its quicker batch processing times and the ability to
handle more data samples within each time unit. Such results



TABLE I
DESCRIPTION OF FULLY CONNECTED NEURAL NETWORK

Layer Type Number of Units/Features Activation Function
Input Layer 784 N/A
Hidden Layer 1024 ReLU
Output Layer 10 None (Linear transformation)

TABLE II
DESCRIPTION OF CONVOLUTIONAL NEURAL NETWORK

Layer Type Configuration Activation
Convolutional Layer 64 filters, 3x3, padding 1 ReLU
Convolutional Layer 64 filters, 3x3, padding 1 ReLU
Pooling Layer 2x2 max pooling N/A
Convolutional Layer 64 filters, 3x3, padding 1 ReLU
Convolutional Layer 64 filters, 3x3, padding 1 ReLU
Pooling Layer 2x2 max pooling N/A
Flattening N/A N/A
Fully-Connected 3136 inputs to 1024 outputs ReLU
Fully-Connected 1024 inputs to output size outputs None

point to its suitability for larger and more complex network
architectures, potentially streamlining the computational load
involved.

Looking ahead, our future work will be geared towards
validating the robustness of the forward gradient method
across a wider array of neural network architectures. We
aim to explore its applicability and performance in more
complex and realistic scenarios, which may include larger
datasets and more demanding tasks. We also plan to inves-
tigate the incorporation of the forward gradient method with
other optimization strategies, such as momentum and adaptive
learning rates, to discern if these combinations can yield even
more pronounced benefits. The ultimate goal is to distill these
insights into simpler, more efficient training methodologies
for deep learning models, facilitating broader accessibility and
application.

REFERENCES

[1] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind,
Automatic Differentiation in Machine Learning: a Survey, https://www.
jmlr.org/papers/v18/17-468.html, 2018.

[2] A. G. Baydin, B. A. Pearlmutter, D. Syme, F. Wood, and P. Torr,
Gradients without Backpropagation, arXiv.org, https://arxiv.org/abs/2202.
08587, February 17, 2022.

[3] L. Fournier, S. Rivaud, E. Belilovsky, M. Eickenberg, and E. Oyallon, Can
forward gradient match backpropagation?, PMLR, https://proceedings.
mlr.press/v202/fournier23a.html, July 3, 2023.

[4] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z.
Lin, A. Desmaison, L. Antiga, and A. Lerer, Automatic differentiation
in PyTorch, OpenReview, https://openreview.net/forum?id=BJJsrmfCZ,
October 28, 2017.



(a) Accuracy

(b) GPU Memory

(c) Training Loss

(d) Time per epoch

Fig. 3. Results of Convolutional Neural Network

(a) Accuracy

(b) GPU Memory

(c) Training Loss

(d) Time per epoch

Fig. 4. Results of Fully connected neural network


