
Benchmarking image classification

models using parallelisation techniques

Abhinav Gorantla Niranjan E N S Sudhanva Moudgalya

{agorant2, nerappan, srmoudga}@asu.edu

School of Computing and Augmented Intelligence

Arizona State University

1 Problem Formulation

As the utilization of computer vision technologies—such as autonomous vehicles—continues

to grow, the importance of image classification correspondingly increases. In certain applications

of computer vision that rely on image classification, the performance of the model is critically

important. For instance, autonomous vehicles require models that deliver both rapid and precise

results to facilitate immediate decision-making. Similarly, other applications in computer vision

demand high accuracy and swift performance from these models due to their time-sensitive

nature.

In this research, we aim to benchmark two prominent image classification models: RESNET50

and Vision Transformers. Our training will involve the CIFAR10 dataset, utilizing different

methodologies within PyTorch, including eager execution, Horovod, and Gpipe. Each model

will undergo training three times using these varied approaches. We will assess and compare the

performance of these models, focusing on their accuracy and training efficiency. During the Gpipe

implementations, the models will be tested across various GPU configurations, incorporating a

range of A30 and A100 GPUs.

The outcomes of this project will facilitate a deeper understanding of the benefits of employing

model and data parallelization techniques, particularly in the training of large-scale models or

when handling extensive datasets. This insight is crucial for enhancing both the efficiency and

effectiveness of model training processes.

This study is interesting because the study’s focus on comparing various parallelization tech-

niques and hardware configurations offers valuable data on optimizing computational resources,
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which is crucial for advancing current machine learning infrastructure and practices. The fact

that we run our experiments on latest image classification models like SWIN Transformer make

this study very compelling as it ensures we are leveraging state-of-the-art techniques in image

classification .

2 Literature Survey

RESNET50 is an image classification deep neural network model. It was introduced by [1]

to solve the problem of training error degradation as we increase the number of layers in a deep

neural network. RESNET solves this problem by introducing a deep residual network framework.

In [1], the authors use a plain network which uses an architecture similar to VGG-19[2]. But the

plain network used in [1] architecture has much lower FLOPs than VGG-19 (almost 18% lower).

The RESNET architecture, based on the plain baseline networks use shortcut connections to put

”residual learning” into the picture. To compare the performance of the RESNET architecture

with the baseline plain network, the authors use the CIFAR10 dataset. In both training and

testing scenarios, the network with residual connections has almost 10% lower classification error

rate.

RESNET has multiple architectures with varying number of layers, we plan to use the

RESNET50 architecture in our project. The reason behind this decision is the performance

gap between the various RESNET architectures from RESNET-34 to RESNET-50, there is al-

most a 3% decrease in top-1 error, but from RESNET-50 to RESNET-152, there is only 1%

decrease in the error value for 10 crop testing on ImageNet validation data.

In this paper, we have selected RESNET and Vision Transformer (ViT) as the primary models

for the comparative analysis of parallelization techniques due to several strategic and insightful

reasons. Firstly, RESNET and ViT offer a diverse range of architectures, with RESNET embody-

ing convolutional neural networks (CNNs) and ViT representing a newer class of models based on

transformer architectures. This diversity enables a thorough evaluation of parallelization tech-

niques across fundamentally distinct computational frameworks. Secondly, both models have

demonstrated state-of-the-art performance in various vision applications. Analyzing paralleliza-

tion techniques using these high-performance models allows us to glean insights into scalability

and efficiency improvements that can be achieved across different model architectures. Lastly,

the distinct computational characteristics of RESNET and ViT make them ideal candidates for

this study. RESNET primarily utilizes convolutional operations, which, while well-optimized
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on current hardware, can still significantly benefit from advanced parallelization techniques to

manage increasingly deep architectures. Conversely, ViT, which operates on an attention-based

mechanism, demands extensive memory and computational resources, particularly due to the

self-attention mechanism that processes image patches. This necessitates an exploration of how

different parallelization strategies can optimize performance and resource utilization in such

models.

Drawing from the success of the Transformer model in natural language processing, a similar

idea was introduced for 2D image data called Vision Transformers(ViT) [3]. ViT adapts the self-

attention mechanism to handle 2D image data. Unlike CNNs which process the image through

localized filters, ViT divides an image into a sequence of patches and treats these patches as

tokens similar to words in a sentence. In detail, ViT architecture splits an images into fixed-size

patches, these patches are then flattened and transformed into embeddings, which is then added

with positional embeddings to retain positional information. The encoder consists of alternating

layers of multi-head self-attention and MLP blocks, with each layer followed by normalization

and equipped with residual connections. The output of the encoder goes through a classification

head, typically a single linear layer, to predict the image label. This architecture leverages the

power of self-attention to focus on relevant parts of the image, regardless of their spatial location,

making it inherently more flexible than CNNs.

We plan to use the CIFAR-10 dataset to benchmark the image classification models in this

study. CIFAR-10 [4] consists of 60,000 32x32 color images distributed evenly across 10 classes,

with each class containing 6,000 images. CIFAR10 is known for its manageable size and complex-

ity, unlike large datasets such as ImageNet which contains millions of images across thousands of

categories, CIFAR10’s modest size gives way to rapid experimentation and model development.

The other key advantage of using CIFAR10 is the relatively low resolution of images which

furthur reduces computational requirements.

Krishevsky et. al [4] introduced CIFAR10 as part of the experimentation of CNNs for image

classification, and then their work on AlexNet achieved state-of-the-art results on CIFAR10.

Since then, CIFAR10 has been used for been used to evaluate performance of many other ar-

chitectures such as VGG, ResNet and DenseNet. Its accessibility, format and diverse class

distribution makes it an ideal choice to evaluate image classification on different parallelization

techniques.

One of the model parallelism framework we plan to evaluate in this study is Gpipe. Gpipe [5]
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is a framework introduced by the engineers at Google for paralellizing deep learning workflows

using a pipeline based approach. Gpipe can be applied on any deep learning model in which the

model can be divided into multiple layers. Both RESNET and swinTransformer can be divided

into multiple layers, hence, Gpipe can be used to parallelize training workflows in both of these

models. Gpipe divides the deep network into smaller sub-networks or stages and each stage is

given the job of processing a prt of the input data or the gradient computation task. Each of

these stages are then sequentially trained on separate cores, forming a pipeline. This allows for

the parallelization.

Dividing network into multiple smaller stages allows for parallelism and also efficient use of

available parallel power. This becomes very important when the size of datasets and models

increase. The impact in the training time when using Gpipe with deep learning models is

explored in [6]. [6] concluded that recompute strategy used by gpipe will negatively impact the

training time of the DNN models. We plan to verify this claim in our study.

The other parallelism we plan to use in this study is Horovod. Horovod [7] was introduced

by the engineers at Uber. It uses the Ring-AllReduce algorithm to distribute the gradient and

parameter updates across the network, enabling efficient communication and synchronization

between nodes during training. This approach helps to significantly reduce the training time

of complex deep learning models by leveraging the computational power of multiple GPUs and

nodes without requiring substantial changes to the existing model code.

Furthermore, Horovod supports advanced features such as tensor fusion, which groups small

communication operations together into larger ones to improve the efficiency of network opera-

tions, and gradient compression, which reduces the amount of data that needs to be transferred

between nodes.

In conclusion, Horovod is an effective and adaptable distributed training framework that aids

developers in effectively scaling their deep learning models across numerous GPUs and nodes.

Its performance optimization features and connection with well-known deep learning frameworks

make it an invaluable tool for speeding up the training of complicated models in a distributed

computing environment. We plan to evaluate this method of model parallelism with the one

offered by Gpipe and check which of the two performs better.
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3 Proposed Method

Our proposed method includes evaluating image classification algorithms on their train time

when using model paralellization / data paralellization as compared to a plain model implemen-

tation on pytorch. For the model paralellization technique we have decided to go with GPipe

and for the data parallelization method, we have decided to go with Horovod. Both of these

parallelization methods have a pip package which make them easy to use.

For the image classification models, we decided to go with RESNET50 and SWIN Trans-

former. We decided to go with these two because RESNET50 is one of the standard models

in the image classification application area. It is a convolutional neural network which has 50

layers. In a CNN, the image is input as a 2D (or 3D) matrix. To this matrix representation of

the image, filters are applied to the input image at each stage and these filters are also applied

at different resolutions. For example, earlier in the network, the filters are applied to extract

higher level features and as we go deeper into the network, we focus on the finer features.

The second image classification model we used for our analysis was the SWIN model [6].

SWIN is a model based on the transformer architecture. It is known to speed up while also

improving accuracy for image classification tasks. In addition to image classification, SWIN

Transformers can also perform image segmentation tasks and is currently one of the state of the

art models for image classification and segmentation tasks.

We ran all our experiments on ASU’s Sol supercomputer using its A100 and A30 super

computers. We go into the details of the exact setup we are using for running the experiments

and for the baseline in the following section.

4 Experimental Setup

We conducted our experiments using the ASU Sol supercomputer, employing two distinct

hardware configurations, each equipped with two NVIDIA GPUs: the A30 and the A100 models.

Both configurations were supported by 1 CPU cores and 8 GB of RAM. The software environment

was standardized across setups, consisting of NVIDIA CUDA version 12.1, Python 3.11.8, and an

array of Python libraries designed for deep learning applications. This included NumPy 1.26.4,

PyTorch 2.1.2, torchaudio 2.1.2, torchvision 0.16.2, torchgpipe 0.0.7, and Horovod 0.28.0.

For the baseline experiments involving ResNet and SWIN, we utilized the A100 GPU on

the ASU Sol supercomputer. To explore the effectiveness of Gpipe, we established two distinct
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setups: one configured with two A30 GPUs, and the other with two A100 GPUs. We tested two

balancing strategies for Gpipe; in the first, both segments of the image classification model were

run on a single GPU with a balance configuration of [2], while in the second setup, each segment

was allocated to a separate GPU with a balance of [1, 1].

For the experiments involving Horovod, we utilized a dual A100 GPU setup to train and test

the models. This configuration was chosen to assess the scalability and efficiency of distributed

training under substantial computational load.

5 Dataset Description

The CIFAR-10 dataset comprises of 60,000 color images distributed evenly across 10 classes

— airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck—with each class

containing 6,000 32x32 pixel images. It is extensively utilized within the machine learning

community, particularly valued for its balance of complexity and manageability. This dataset

is segmented into a training set of 50,000 images and a testing set of 10,000 images, ensuring

equitable representation of each class in both subsets [4].

CIFAR-10’s origins from the 80 million tiny images dataset and its introduction by [4].

present it as a dataset designed to challenge object recognition algorithms with a variety of

image orientations, lighting conditions, and background scenarios. Despite the small size of the

images, the dataset effectively simulates real-world visual diversity, making it a robust tool for

testing image classification models.

For our project, CIFAR-10’s modest image size and comprehensive class distribution are

advantageous, enabling rapid iteration and development of models. This makes it ideal for eval-

uating the performance impacts of parallelization techniques on image classification algorithms.

The dataset’s reduced computational demand compared to larger sets like ImageNet allows for

more frequent and faster training cycles. This facilitates a focused examination of how model and

data parallelization techniques, such as those implemented with Gpipe and Horovod, influence

training efficiency and model accuracy.

In essence, CIFAR-10 serves as an optimal platform for this project by allowing us to con-

centrate on the parallelization impacts without the extensive computational overhead associated

with larger datasets.
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6 Results

RESNET50 (A100) SWIN (A100)

Accuracy 83.53% 91.2%

Train Time 56.4 minutes 120.6 minutes

Table 1: Base Experiment results

Table 1 shows the base performance results on an A100 GPU, where RESNET50 achieved

83.53% accuracy in 56.4 minutes, while the SWIN Transformer reached 91.2% accuracy in 120.6

minutes. Table 2 shows performance using GPipe on different hardware setups. For RESNET50,

the A30 x2 GPUs yielded 83.41% accuracy in 87 minutes, and the A100 x2 GPUs resulted

in 83.04% accuracy in 51 minutes. In comparison, the SWIN Transformer model on A30 x2

GPUs achieved 90.46% accuracy in 150.2 minutes, and on A100 x2 GPUs, it achieved 90.08%

accuracy in 102.4 minutes. The GPipe framework generally reduced training time for the SWIN

Transformer, especially on the A100 x2 setup.

RESNET50 (A30 x 2) RESNET50 (A100 x 2) SWIN (A30 x 2) SWIN (A100 x 2)

Accuracy 83.41% 83.04% 90.46% 90.08%

Train Time 87 minutes 51 minutes 150.2 minutes 102.4 minutes

Table 2: Performance when using Gpipe

RESNET50 (A1000 x 2) SWIN (A100 x 2)

Accuracy 83.04% 90.08%

Train Time 39.2 minutes 92.6 minutes

Table 3: Performance when using Horovod

Table 3 shows that the performance improvements are evident when using Horovod on two

A100 GPUs. Here, RESNET50’s accuracy slightly decreased to 83.04%, but the training time

was significantly reduced to 39.2 minutes. The SWIN Transformer’s accuracy remained high at

90.08%, and the training time was reduced to 92.6 minutes, indicating that using Horovod with

dual A100 GPUs enhances training efficiency, particularly for the SWIN Transformer.
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7 Conclusion

The results we obtained by implementing model and data paralellization were not something

we expected. From the literature we surveyed, we expected to have a speed-up of 2 - 2.5

when using GPipe (model parallelization) and a speed up of 3 - 3.5 when using Horovod (data

parallelization). But this was nowhere close to the results we got, in fact, when running using

RESNET50 and SWIN using parallelization techniques (Horovod, GPipe), it took us slightly

longer to train these models although the accutacy remained approximately the same across all

the training methods (serial, model parallel and data parallel).

8 Future Work

In the future we plan to extend this study to include more parallelization techniques like

DeepSpeed, more hardware configurations (more number of GPUs and also more GPU archi-

tectures). We also plan to run these different configurations on different sizes of datasets with

varying image sizes (image resolution). We think that this will give us a better idea on how

these models will scale on varying types of image data and GPU architectures.
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A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), vol. 32, Curran Associates,

Inc., 2019.

[6] P. Zhang, B. Lee, and Y. Qiao, “Experimental evaluation of the performance of gpipe paral-

lelism,” Future Generation Computer Systems, vol. 147, pp. 107–118, 2023.

[7] A. Sergeev and M. D. Balso, “Horovod: fast and easy distributed deep learning in tensorflow,”

CoRR, vol. abs/1802.05799, 2018.

9


	Problem Formulation
	Literature Survey
	Proposed Method
	Experimental Setup
	Dataset Description
	Results
	Conclusion
	Future Work

