
CSE 598 Project Report

A Comparative Analysis of Deep

Learning Frameworks for Music

Recommendation Systems

Group - 17

Aman Bhala ∗ Ishan Bansal † Kartikeya Kansal ‡

1 Problem Formulation

While music recommendation systems have been extensively explored, there ex-
ists a significant gap in the literature concerning the comprehensive performance
analysis of such models across different deep learning frameworks, particularly
in the context of PyTorch and TensorFlow2.x. Despite the critical role these
frameworks play in the development and deployment of machine learning mod-
els, there is a noticeable lack of studies that systematically evaluate and compare
their performance specifically for music recommendation tasks. This absence of
comparative analysis not only hampers the advancement of more efficient and
accurate music recommendation systems but also limits the ability of developers
and researchers to make informed decisions regarding the selection of a frame-
work that best suits their needs. Bridging this gap is essential for pushing the
boundaries of what is possible in music recommendation, enhancing the user
experience through more personalized and accurate suggestions, and optimizing
the computational efficiency of these systems.

2 Proposed Solution

In this project, we propose to develop and conduct a comprehensive performance
analysis of music recommendation engines using PyTorch and TensorFlow2.x.
Our approach integrated both collaborative and content-filtering techniques to
provide personalized music recommendations. For content-based filtering, we
explored some clustering mechanisms whereas for collaborative filtering we an-
alyzed user-item interactions and preferences, drawing insights from large-scale
datasets to predict user preferences for music tracks or genres they have not yet
encountered.

We evaluated these hybrid recommendation systems across various music
datasets, including the Million Song Dataset, the FMA dataset and the Last.fm
Dataset . These datasets offer a rich diversity of music genres, and user prefer-
ences, making them ideal for assessing the effectiveness of our recommendation
models. By combining collaborative and content filtering, we anticipate our

∗abhala1@asu.edu
†ibansal5@asu.edu
‡kkansal1@asu.edu

1



models will more accurately capture and predict user preferences, leading to
more personalized and satisfying music-listening experiences.

To ensure a fair and meaningful comparison, we designed the model architec-
ture and hyperparameters to be consistent across both frameworks. While there
are pre-trained models available for tasks like image classification, the domain of
music recommendation systems presents unique challenges that necessitate the
development of specialized models. Given the lack of widely adopted pre-trained
models for music recommendation, we created our models, paying close atten-
tion to feature extraction, sequence modeling, and personalization techniques,
maintaining identical hyperparameters in both PyTorch and TensorFlow2.x to
the extent possible.

Our analysis not only compares the performance of these models in terms of
accuracy, precision, recall, and computational efficiency but also evaluates their
scalability, ease of implementation, and adaptability to different datasets. This
systematic evaluation aims to provide valuable insights into the strengths and
limitations of PyTorch and TensorFlow2.x in the context of music recommen-
dation, guiding future development and framework selection for researchers and
practitioners in the field.

3 Literature Survey

The development and evaluation of music recommendation systems have been
the subject of extensive research, exploring various methodologies ranging from
collaborative and content-based filtering to more complex deep learning ap-
proaches. This literature survey highlights key studies and developments in the
field, focusing on the utilization of collaborative filtering, content-based filtering,
and deep learning techniques within music recommendation systems. Addition-
ally, it sheds light on the comparative analysis of deep learning frameworks,
particularly PyTorch and TensorFlow2.x, in various domains.

In [1], they provide a comprehensive overview of collaborative filtering tech-
niques applied to music recommendation, emphasizing the challenges of recom-
mending long-tail tracks. In [2], they explore the use of CNNs for extracting
features from audio data, demonstrating the effectiveness of multi-modal ap-
proaches in music genre classification. [3], their research not only applies deep
learning for sound classification but also discusses various evaluation metrics
that can be adapted for assessing music recommendation systems, such as ac-
curacy, precision, and recall.

4 Dataset

The dataset presented in Table 1 is a substantial compilation of lyrical content
from the website LyricsFreak, meticulously gathered through web scraping tech-
niques. It constitutes a rich repository of 57,650 songs in the English language,
providing a robust foundation for the development of a content-based filtering

2



music recommendation system. Each entry in the dataset is structured with
several fields, offering a comprehensive snapshot of the song’s metadata: the
name of the artist, the title of the song, a unique link to the lyrics page on
LyricsFreak, and a text snippet from the lyrics themselves.

This meticulous assemblage of data is of paramount importance for machine
learning models that aim to analyze and understand patterns within musical
content. The ‘artist’ field is crucial as it enables the recommendation system to
identify and suggest songs by the same artist, catering to listeners’ preferences
for a particular singer or band. The ‘song’ field, which holds the title, allows
for the easy identification of individual tracks. Most importantly, the ‘link’ field
provides a direct URL to the full lyrics, facilitating a deeper analysis of the
song’s textual content, such as themes, vocabulary, and sentiment. The ‘text’
field containing the lyrics excerpt is an essential feature for preliminary filtering
and quick content analysis, which can be used for immediate categorization of
songs based on the language used.

This dataset is designed not only to fuel the recommendation engine but
also to enable detailed textual analysis that can lead to insights into the trends,
patterns, and emotional landscapes that prevail in music lyrics. Such analysis
can underpin the engine’s capability to offer personalized song suggestions based
on lyrical content, thereby enhancing the user experience. Overall, this dataset
serves as a foundational component in bridging the gap between complex algo-
rithmic processes and the nuanced, emotional connections that users form with
music.

Artist Song Link Text Snippet
ABBA Ahe’s My Kind Of

Girl
/a/abba/ahes+my+kind+of+girl 20598417.html Look at her face, it’s a wonderful

face...
ABBA Andante, Andante /a/abba/andante+andante 20002708.html Take it easy with me, please...
ABBA As Good As New /a/abba/as+good+as+new 20003033.html I’ll never know why I had to go...
ABBA Bang /a/abba/bang 20598415.html Making somebody happy is a

question of give and...
ABBA Bang-A-

Boomerang
/a/abba/bang+a+boomerang 20002668.html Making somebody happy is a

question of give and...

Table 1: Sample entries from the music recommendation dataset.

5 Model Architecture

This section is designed to detail the process by which our machine learning
model, for content-based filtering, processes and learns from textual data to
provide recommendations. This model is commonly used in recommendation
systems for items like songs, movies, or products, where the content of the item
is used to recommend similar items to users.

The first stage of the model involves Text Tokenization and Sequence
Padding. It begins with the initialization of a tokenizer. In this context,
the tokenizer is configured to handle a vocabulary size of 10,000 words, which
helps in converting the text into a manageable set of tokens that the model can
understand. Any word not included in the tokenizer’s vocabulary is assigned an

3



out-of-vocabulary token, commonly denoted as “oov ”.
Once the tokenizer is set up, it proceeds to Fit Tokenizer, where the tok-

enizer is exposed to the dataset—typically a collection of text, (song lyrics, in
our case) and learns to map each unique word to a specific integer index. This
mapping is crucial as it transforms the textual data into a numerical format
that the neural network can process.

The next step is Text to Sequences, where the actual conversion of text
data into sequences of integers takes place. Each integer represents a specific
word in the learned vocabulary. This transformation allows the model to treat
the text structurally, assessing each word according to its position and signifi-
cance in the sequence.

Finally, Pad Sequences is the process of standardizing the length of all
sequences. Since input data can vary in length, and neural networks require a
uniform input shape, sequences are truncated or padded with zeros to ensure
they are all of the same specified length, in this case, 120 words.

The architecture then outlines the layers involved in the neural network:
The Embedding Layer is the first layer of the neural network where each

integer in the sequence is mapped to a dense vector of fixed size. This layer
is essential for the model to understand and process the text data effectively.
The Average Pooling Layer then simplifies the output of the embedding
layer by averaging over the sequence dimension, reducing the data’s complexity
and preparing it for the dense layers. A Dense Layer follows, which is a
fully connected layer of the neural network. Here, the model learns to detect
patterns in the averaged embeddings, using the rectified linear unit (ReLU)
activation function to introduce non-linearity into the model, allowing it to learn
more complex patterns. The final Dense Layer is where the model outputs
its predictions. The size of this layer corresponds to the number of unique
items (e.g., songs) in the dataset, and it uses the softmax activation function to
provide a probability distribution over all possible items. The softmax function
ensures that the output probabilities sum to one, making it easier to interpret
the model’s predictions as confidence scores for recommending each item.

6 Methodology

6.1 Content Based Filtering

Content-based filtering is a recommendation technique that suggests items simi-
lar to those a user has previously liked or interacted with. This method primarily
relies on the features of the items themselves, rather than user-user similarities.
It creates a profile for each item, incorporating relevant characteristics such
as genre, keywords, or any specific attributes pertinent to the item’s category.
For instance, in a movie recommendation system, features might include genre,
director, and major actors.

The user profile is constructed based on the characteristics of items that the
user has rated highly or interacted with frequently. Algorithms analyze these

4



interactions to identify patterns or preferences in the user’s behavior, which are
then used to predict and recommend new items that share similar features.

Content-based filtering has several advantages. It allows for personalized
recommendations as it builds a unique profile for each user. Additionally, it
does not require data about other users, thus avoiding the cold-start problem
associated with new users in collaborative filtering systems. However, it can lead
to a lack of diversity in recommendations, as the system tends to recommend
items that are too similar to those already consumed by the user. Moreover,
its effectiveness heavily depends on the richness and accuracy of the metadata
associated with each item.

6.2 Implementation

In the domain of music recommendation systems, content-based filtering has
seen innovative applications, particularly through the analysis of song lyrics. A
notable implementation of this technique is the development of a recommen-
dation engine that leverages Natural Language Processing (NLP) to parse and
understand the lyrical content of songs, aiming to recommend tracks with sim-
ilar thematic or emotional content.

The first step in this process involves the extraction and preprocessing of
lyrics. Lyrics are collected from a comprehensive database and are subjected to
standard NLP preprocessing methods, such as tokenization, stop-word removal,
and stemming. This preprocessing helps in reducing the complexity of the text
and focuses on the most meaningful elements of the lyrics.

Following this, the next phase involves feature extraction where the pre-
processed lyrics are converted into a numerical format that can be processed
by machine learning algorithms. Techniques such as Term Frequency-Inverse
Document Frequency (TF-IDF) or word embeddings like Word2Vec are used to
vectorize the lyrics. These vectors effectively capture the semantic and syntactic
essence of the lyrics, allowing for the quantification of similarities between songs
based on their lyrical content.

Once the feature set is prepared, the recommendation engine employs clus-
tering algorithms, such as K-means or hierarchical clustering, to group similar
songs based on their lyrical similarities. Each cluster represents a niche of songs
that share common themes or emotional tones. For personalized recommenda-
tions, the system analyzes the user’s listening history to identify their preference
patterns and suggests new songs from the clusters that align with their past in-
terests.

Additionally, advanced implementations may incorporate sentiment analysis
to further enhance recommendation accuracy. By assessing the emotional tone
of the lyrics—whether they are happy, sad, angry, or relaxing—the system can
tailor recommendations to fit not only the thematic preferences of the user but
also their current mood or emotional state.

This implementation showcases a significant advancement in music recom-
mendation systems by moving beyond traditional metadata like genre or artist
and tapping into the rich, expressive layers of music offered by lyrics. This

5



approach not only enhances the user experience by providing more nuanced
recommendations but also demonstrates the potential of combining NLP with
machine learning to unlock deeper insights in multimedia content.

7 Experimental Setup

In our project on music recommendation systems utilizing PyTorch and Tensor-
Flow2.x, the experimental setup was crafted to ensure precise and reproducible
comparisons across both frameworks. We used the Million Song Dataset, the
FMA dataset, and the Last.fm Dataset to assess our hybrid recommendation
models, which integrate collaborative and content-filtering techniques. To pro-
vide a consistent basis for comparison, each framework was set up with identi-
cal model architectures and hyperparameters, including batch sizes, number of
epochs, and learning rates.

For the hardware setup, we utilized a Mac M1 8-core CPU and leveraged
Google Colab’s Tesla T4 GPU to conduct our experiments. This allowed us to
evaluate the performance differences between PyTorch and TensorFlow2.x under
varying computational loads. We specifically tested the models with different
numbers of data points—5,000, 20,000, and 50,000—to understand how each
framework scales with increasing data volumes and complexity.

The rigorous data preprocessing steps ensured that the input data were stan-
dardized, and both frameworks operated under equivalent experimental condi-
tions. This careful setup enabled us to isolate the frameworks’ performance
capabilities from other variables, providing a clear and detailed analysis of their
strengths and limitations within the context of music recommendation.

6



8 Results

Figure 1: Model on TensorFlow
- 5000 songs

Figure 2: Model on Pytorch -
5000 songs

Figure 3: Model on TensorFlow
- 20,000 songs

Figure 4: Model on Pytorch -
20,000 songs

Figure 5: Model on TensorFlow
- 50,000 songs

Figure 6: Model on Pytorch -
50,000 songs

Figure 7: Model on TensorFlow
- 50,000 songs

Figure 8: Model on Pytorch -
50,000 songs

Above results indicate that for smaller datasets like 5000 songs, we see that
PyTorch performs better than Tensorflow while resource consumption remains
almost same. For 5000 songs, PyTorch takes 28.94 seconds as the overall training
time and 0.28 seconds for training per epoch, while Tensorflow takes 31.55 sec-
onds as the overall training time and 0.31 seconds as training time per epoch.

7



For larger datasets like 20000 songs, tensorflow takes 247 seconds for overall
training time and PyTorch takes 379.81 seconds and for 50000 songs, Tensor-
flow takes 1252 seconds and PyTorch takes 1968 seconds. This shows that for
smaller datasets, Pytorch performs slightly better than Tensorflow while for
larger datasets, Tensorflow works better than PyTorch in terms of overall train-
ing time and training time per epoch.

9 Conclusion

Our experimentation has yielded insightful conclusions regarding the compar-
ative strengths of PyTorch and TensorFlow in various computational contexts.
PyTorch, with its pythonic and intuitive coding style, excels primarily in re-
search and development environments. This framework is particularly favored
for its flexibility, allowing researchers and developers to easily experiment with
novel ideas and algorithms. Its straightforward structure not only simplifies de-
bugging but also makes PyTorch highly accessible for small-scale projects and
educational purposes, where understanding and tweaking the inner workings of
models is crucial.

On the other hand, TensorFlow proves to be the superior choice for large-
scale deployments. Its robust suite of tools and an extensive ecosystem are
well-suited for developing and managing complex neural network architectures.
TensorFlow’s strength lies in its scalable nature and advanced features such
as distributed training capabilities, which are essential for processing and an-
alyzing vast datasets efficiently. This makes TensorFlow particularly valuable
in production environments where performance, reliability, and scalability are
critical.

Overall, both frameworks offer unique advantages tailored to specific needs
and environments—PyTorch for flexibility and ease of use in research and small
projects, and TensorFlow for robustness and scalability in large-scale industrial
applications.

10 Future Works

To enhance the current project, several key improvements are planned for the
near future:

Firstly, there will be a significant expansion of the dataset to include 50,000
songs, a move aimed at providing a broader spectrum of user preferences and
improving the granularity of the music recommendation system. By tapping
into a larger array of songs, the system is expected to capture more nuanced
tastes and listening patterns, leading to a more personalized user experience.

The project also intends to refine the underlying recommendation engine
by restructuring its architecture. This will involve incorporating collaborative
filtering techniques that not only rely on individual listening histories but also
draw from collective user data. Such methods are particularly adept at identi-

8



fying and predicting user preferences by examining similarities among various
user profiles. The metadata associated with the songs, such as genre, release
date, and artist popularity, will be utilized more effectively to enhance recom-
mendation accuracy.

In addition to improving the current system, alternative techniques for music
recommendation will be explored. One such avenue is the use of sophisticated
deep learning models that can potentially uncover complex patterns in music
preference that simpler models may overlook. The adaptability and predictive
power of deep learning models offer promising enhancements to recommendation
systems.

Finally, to ensure the reliability and adaptability of the system across dif-
ferent platforms, comprehensive testing will be conducted on multiple devices.
This rigorous testing protocol will help in identifying any device-specific issues
and ensure a seamless and robust user experience regardless of the hardware
used. The aim is to deliver a universally accessible system that provides high-
quality music recommendations on any device.

These planned enhancements are designed to make the music recommen-
dation service more intuitive, accurate, and enjoyable for users across various
interfaces.

References

[1] K. Choi, G. Fazekas, M. Sandler, and K. Cho, “Convolutional recurrent
neural networks for music classification,” in 2017 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp.
2392–2396.

[2] S. Oramas, F. Barbieri, O. Nieto Caballero, and X. Serra, “Multimodal deep
learning for music genre classification,” Transactions of the International
Society for Music Information Retrieval. 2018; 1 (1): 4-21., 2018.

[3] O. Celma, Music Recommendation and Discovery: The Long Tail, Long Fail,
and Long Play in the Digital Music Space, 01 2010.

9


