Accelerating Decision Tree Training on the HIGGS Dataset

Venkat Raman Sankar

Swetha Govindasamy

Subramanian Thiyagarajan

Arizona State University Manamalli Arizona State University
Tempe, USA Arizona State University Tempe, USA
vsanka2l@asu.edu Tempe, USA sthiyagS@asu.edu
sgovin34@asu.edu

Abstract— Training decision trees for large,
complex datasets like the HIGGS dataset traditionally
rely on CPU-based methods, which can be inefficient
and slow due to the computational demands. This paper
explores the use of Graphics Processing Units (GPUs) to
accelerate decision tree training, leveraging the parallel
processing capabilities of GPUs and specialized libraries
such as cuML and Velox. This approach promises
significant improvements in training speed and
efficiency, which is crucial for timely data analysis in
high-energy physics and other fields requiring rapid
model training and iteration.

I. INTRODUCTION

The evolution of machine learning algorithms and their
applications across diverse domains demands increasingly
efficient computational methods to handle large and
complex datasets. One such dataset, the HIGGS dataset,
simulates the data produced by the Large Hadron Collider
(LHC) at CERN and is characterized by its substantial size
and complexity. The traditional CPU-based training
methods for decision trees applied to this dataset are
plagued by significant computational inefficiencies and
slow processing times. This inefficiency is problematic,
especially in fields like particle physics where timely data
analysis is crucial for testing and developing theoretical
models.

II. PROBLEM STATEMENT

The problem addressed in this investigation is the
computational inefficiency and sluggish training times
associated with CPU-based decision tree training methods
when applied to large-scale datasets such as the HIGGS
dataset. This issue is particularly pressing and interesting
given the increasing size and complexity of datasets in
machine learning and the need for faster model
development cycles. The ability to accelerate decision tree
training not only saves valuable time but also enhances the

ability to perform more complex analyses and iterative
model improvements promptly.

III. LITERATURE REVIEW

To provide a comprehensive context and background for
this investigation, the following key readings and sources
were examined:

A. Comparison of End-to-End Decision Forest
Inference Pipelines by Hong Guan et al.

This paper provides a systematic comparison of various
decision forest inference pipelines. The study focuses on
evaluating these pipelines based on computational
efficiency, memory usage, and scalability using standard
datasets. Key findings indicate that modern inference
techniques, such as model pruning and hardware
optimization, can significantly enhance processing speeds
without sacrificing accuracy. This research is crucial for
professionals implementing machine learning models in
resource-constrained environments, offering insights into
optimizing decision forests for better performance and
scalability [1].

B. Accelerating Random Forests Up to 45x Using cuML by
NVIDIA

This reference discusses the substantial acceleration of
random forests, a collective of decision trees, using GPU
acceleration, highlighting the potential benefits of
leveraging such technologies for individual decision trees

2].

C. Implementing Decision Trees and Forests on a GPU by
T. Sharp

This paper provides foundational insights into
algorithms and methodologies for efficiently implementing

decision trees on GPU architectures, offering a direct guide
to the technical strategies applicable to this project [3].

D. Learning a Decision Tree Algorithm with Transformers
by Zhuang et al.

Although primarily focusing on integrating transformers
with decision trees, this paper offers innovative
methodologies that may enhance the performance and
feature selection capabilities of decision trees [4].

E. The HIGGS Dataset from the UCI Machine Learning
Repository

Essential for understanding the dataset's complexity and
the computational challenges it poses, serving as the
justification for adopting GPU-accelerated approaches.

These sources were critically reviewed to understand the
current state of GPU acceleration in decision tree training
and to identify any gaps or potential for innovation that this
project could address [5].

IV. DECISION TREE TRAINING

Decision tree algorithms, which are pivotal for both
classification and regression tasks, structure data into a
tree-like model of decisions and their possible
consequences. The training of decision trees is an iterative
process of partitioning data based on feature values, as
depicted in Figure 1. The root node holds the entire dataset,
initiating the first split. Decision nodes determine further
data splits to maximize homogeneity within subsets, using
criteria such as Gini impurity or entropy. Terminal nodes,
or leaves, signify the outcome, yielding the class label in
classification tasks. The recursive splitting forms branches
or sub-trees, representing the hierarchical decision-making
process [6]. This approach's efficiency is pivotal when
applied to large datasets like the HIGGS, necessitating
strategies to optimize computational performance and
accuracy. The following models are used to benchmark the
performance across CPU and GPU [7].

A. Decision Tree Classifier (scikit-learn)

The DecisionTreeClassifier in scikit-learn employs a
greedy algorithm, typically the CART (Classification and
Regression Trees) algorithm, which aims to binary split the
training records into subsets based on a measure like Gini
impurity or entropy decrease. This classifier is exhaustive
in nature, evaluating all possible splits for the best
outcome. The tree is built node-by-node from the top,
choosing the split that most effectively separates the
classes or reduces variance in regression cases.

B. Random Forest Classifier (cuML)

The RandomForestClassifier in cuML uses an ensemble
of decision trees, each constructed from a bootstrap sample
of the data. Each tree in the ensemble is built using a
random subset of features at each split, which introduces
diversity in the models and typically results in a more
robust overall model. cuML's implementation leverages
CUDA on NVIDIA GPUs for parallel construction of trees
and efficient computation of splits, dramatically reducing
training time on large datasets like the HIGGS dataset [2].

C. XGBoost

XGBoost improves upon traditional gradient boosting by
systematically handling missing values, employing
second-order gradients for optimization, and providing
regularization parameters to prevent overfitting. It builds
the model in a stage-wise fashion like other boosting
methods but does so more efficiently. XGBoost also offers
a highly scalable solution that supports distributed
computing, enabling it to handle large datasets effectively.
It uses a sparsity-aware algorithm for handling different
data formats and optimizes both computational resources
and memory usage.

ROOT Node J
Splitting z

‘ Decision Node

Branch/ Sub-Tree

A DecisionNodeJ

Terminal Node

{ Terminal Node ‘ ‘ Decision Node 1 ‘ Terminal Node

“_ B C

Terminal Node

Terminal Node

Note:- A is parent node of B and C.

Fig. 1: Schematic of a decision tree structure showcasing the root
node, decision nodes, terminal nodes, and branches during
training.

V. PROPOSED METHODOLOGY

The proposed solution involves the development and
implementation of a GPU-accelerated decision tree
algorithm using the cuML library, complemented by the
integration of Velox for efficient data handling and
querying. The methodology includes the following key
components:

A. GPU-Accelerated Decision Tree Algorithm

Design and implement a decision tree algorithm that
exploits the parallel processing capabilities of NVIDIA

GPUs, specifically tailored to the requirements and
characteristics of the HIGGS dataset.

B. cuML Library Utilization

Leverage cuML to harness the computational power of
GPUs for machine learning, thus transcending the
performance limitations of traditional CPU-based
implementations.

VI. EXPERIMENT SETUP
A. Hardware and Software Configuration

The experiments were conducted using the Arizona State
University's (ASU) SOL supercomputer, which provided a
robust platform for both CPU and GPU intensive
computations. The hardware configurations were
specifically tailored to evaluate the performance under
different computational resources. For CPU-based
experiments, the setup included a 2-core CPU, 8 GB of
RAM, and access to a basic GPU. In contrast, the
GPU-based experiments employed a more advanced setup
featuring a 4-core CPU, 32 GB of RAM, and an NVIDIA
A100 GPU, which is well-suited for high-performance
computing tasks. This distinction in hardware was crucial
for assessing the capabilities and limitations of each
computational approach under different levels of resource
availability.

To ensure comparability across all tests, a standardized
software environment was maintained. Python 3.11.8 was
selected as the programming language due to its
widespread support for scientific computing libraries,
ensuring consistency and reliability in execution. The
decision tree classifiers were implemented using
Scikit-learn on CPU configurations to establish a baseline
for performance. For GPU-accelerated experiments,
RAPIDS Al was leveraged, utilizing the cuML library for
machine learning and the cuDF library for data
manipulation, maximizing the computational advantages of
NVIDIA GPUs. Furthermore, XGBoost was employed for
gradient boosting on GPUs, facilitating a detailed
comparison of performance and accuracy across different
setups, and highlighting the enhancements brought by GPU
acceleration.

B. Experiment Setup

Three distinct computational approaches were employed
to evaluate the performance of machine learning models
using the HIGGS dataset. Firstly, a baseline model utilizing
the decision tree classifier from Scikit-learn was executed
on a CPU setup. This model served as a reference point to
assess the performance capabilities of traditional

CPU-based machine learning. Secondly, to exploit the
advanced computational power of GPUs, the decision tree
classifier was implemented using the cuML library from
RAPIDS AI on an NVIDIA A100 GPU. This setup was
chosen to highlight the potential speed and efficiency
improvements achievable through GPU acceleration.
Lastly, the gradient boosting model from XGBoost was
also deployed on the NVIDIA A100 GPU. This approach
allowed for a direct comparison with the cuML
implementation, focusing on differences in accuracy and
processing time. Each method was meticulously tailored to
evaluate the specific advantages and constraints of the
corresponding hardware environment.

Each model was trained on a consistent subset of one
million samples from the dataset. The focus was on
measuring the training time and accuracy, illustrating the
impact of different computational resources on machine
learning tasks.

VII. DATA DESCRIPTION

The dataset underpinning our experiments is a
large-scale, simulated dataset known as the HIGGS,
encompassing 11 million instances, each characterized by
28 distinct attributes. This dataset's primary purpose is to
enable the classification of particle collision events into
two distinct outcomes: those that result in the production of
Higgs bosons (signal) and those that do not (background).
Generated through Monte Carlo simulations, these events
replicate the conditions of high-energy proton collisions
within a particle accelerator environment. The dataset
features a binary label as its first attribute, marking the
category of each event. Following this, it presents 21
features reflective of the kinematic properties recorded by
the detectors in the accelerator, complemented by six
advanced attributes derived from the primary features to
enhance classification tasks. This robust dataset presents an
array of challenges for researchers applying classification
algorithms within the realm of physical sciences, serving as
a standardized gauge for methodological comparison.

The simulation responsible for producing the dataset
employed the comprehensive ATLAS detector simulation
to recreate the complex interactions of proton-proton
collisions, monitoring the emergent particles within a
meticulously crafted digital replica of the detector.
Specifically, the signal class within the dataset
encompasses those events that simulate the emergence of
Higgs bosons at a mass of 125 GeV. In contrast, the
background class includes various other processes that
could potentially mimic signal events. The partitioned
dataset allocates 1 million samples for training [5].

VIII. EVALUATION RESULTS

A. Performance Metrics

The evaluation of the decision tree models trained on the
HIGGS dataset was conducted using two key metrics:
training time and accuracy. These metrics provide insight
into the efficiency and effectiveness of each computational
approach under the different hardware setups. Table 1
represents the comparison of model accuracy and training
time across these different implementations.

B. Results from CPU-Based Experiments

Using the Scikit-learn implementation on the CPU setup
(2-core CPU and 8 GB RAM), the decision tree classifier
achieved an accuracy of 67%. The training time for this
setup was notably longer, taking approximately 4 minutes
and 28 seconds to train on a subset of one million samples.
This baseline performance sets the stage for understanding
the benefits of GPU acceleration.

Fig. 2: Structure of the decision tree classifier on the Higgs
dataset

A visual representation of the decision tree model used
in the experiments is depicted in Figure 2. The tree
structure commences with a root node that utilizes feature
20 to make the initial bifurcation, dividing the dataset
based on the calculated threshold value. Subsequently, each
internal node in the tree corresponds to a feature in the
HIGGS dataset that contributes to further splitting,
effectively partitioning the data into subsets based on the
feature values. The leaves of the tree, although not fully
detailed in the visual, represent the final outcomes where
the classification decisions are made. Each node is
annotated with the feature index, the threshold for splitting,
the sample size at that node, and the class value
distribution, thus encapsulating the decision logic of the
model. This visual aids in the interpretation of the
decision-making process of the model, providing insights
into the feature relevance and decision pathways that led to
the classification outcomes.

C. Results from GPU-Based Experiments

The cuML implementation showcased significant
improvements in training speed. The decision tree model
completed training in just about 8 seconds, a drastic
reduction from the CPU-based time. The accuracy obtained
was 73.8035%, which represents an improvement over the
CPU-based model but suggests there is room for further
optimization in model parameters or training techniques.

XGBoost exhibited the best performance in terms of
both speed and accuracy. The training process was
completed in approximately 10 seconds. The model
achieved an impressive accuracy of 88%, highlighting the
effectiveness of wusing advanced gradient boosting
techniques on powerful GPU hardware.

TABLE 1
COMPARISON OF MODEL ACCURACY AND
TRAINING TIME ACROSS DIFFERENT

IMPLEMENTATIONS
Implementation Accuracy (%) Training Time
Scikit-learn 67 4 minutes 28
(CPU) sec
cuML (GPU) 73.8035 8 seconds
XGBoost (GPU) 88 10 seconds

D. Comparison and Discussion

The transition from CPU to GPU computing
demonstrated substantial benefits in both training speed
and model accuracy. The use of RAPIDS AI’'s cuML
library significantly accelerated the training process while
also providing a modest boost in accuracy compared to the
CPU-only approach. However, the XGBoost
implementation outperformed cuML in terms of accuracy,
showcasing the potential of ensemble methods like
gradient boosting when optimized for GPU use.

The graph in Figure 3 presents the accuracy (in %) and
training time (in seconds) for three different
implementations of decision tree models (Scikit-learn on
CPU, cuML on GPU, and XGBoost on GPU). Accuracies
are depicted as red lines with circle markers, and training
times are shown as blue lines with square markers.
Legends are positioned at the bottom for clear
differentiation.

g?mparison of Decision Tree Model Metrics on Different Hardware Setu;ﬁ)s
268s %

-250
85

N
S
S

3
3
=
I
=)

Accuracy (%)

~
Il
-
o
S

Training Time (seconds)

-50

10s

-0
Scikit-learn (CPU) cuML (GPU) XGBoost (GPU)

Model
—@- Accuracy (%) - Training Time (sec) |

Fig. 3: Comparison of Decision Tree Model Metrics on Different
Hardware Setups.

The observed differences in performance underscore the
impact of hardware choices on the execution and outcomes
of machine learning tasks. While GPU acceleration
presents clear advantages, the choice of algorithm and its
implementation also play crucial roles in harnessing the
full potential of the hardware.

IX. CONCLUSION

In conclusion, this study has conducted a comparative
analysis of three leading machine learning
algorithms—scikit-learn's Decision Tree Classifier, cuML's
Random Forest Classifier, and XGBoost—for expediting
the training process of decision trees on the HIGGS
dataset. Our findings highlight that each algorithm
leverages computational resources differently, with varying
implications on performance and efficiency. The Decision
Tree Classifier, with its ease of use and interpretability,
provides a solid baseline for classification tasks. However,
when scaled to the extensive HIGGS dataset, cuML's
Random Forest Classifier and XGBoost stand out due to
their inherent design to capitalize on parallel processing,
particularly when harnessed on GPU-enabled architectures.

The cuML library, designed to operate natively on
GPUs, harnesses the parallel execution capabilities of the
hardware, markedly accelerating Random Forest's training
times. XGBoost further complements this by offering a
highly scalable and performance-optimized gradient
boosting framework that can efficiently process large-scale
data, making it exceptionally well-suited for the HIGGS
dataset's challenging dimensions.

The practical application of these algorithms has shown
that the choice between CPU and GPU processing, and the
selection among these platforms, should be guided by the
specific demands of the dataset, the computational
complexity of the model, and the available hardware
infrastructure. While GPUs, with their capacity for massive
parallelism, excel in handling the voluminous and complex

computations required for large datasets like HIGGS,
CPUs may still be preferable for smaller datasets or when
limited by hardware constraints.

To determine the most effective approach for
accelerating decision tree training on the HIGGS dataset, it
is crucial to undertake a comprehensive performance
benchmarking. Such an evaluation should consider not just
the speed, but also the accuracy, scalability, and
cost-effectiveness of the model training process. By
meticulously assessing these criteria, practitioners can
ensure that they select the most suitable computational
approach, be it CPU or GPU, for their specific machine
learning tasks.

X. FUTURE WORK

The ongoing development and enhancement of our
GPU-accelerated decision tree training framework are
geared towards integrating and optimizing additional tools
to further boost efficiency and performance. One such
critical component is Velox, a state-of-the-art data
processing library designed to enhance data management
capabilities in large-scale machine learning applications.
The integration of Velox presents a promising avenue for
improving data handling and querying processes, thus
accelerating the overall analysis pipeline.

This integration aims to leverage Velox's advanced
capabilities in managing and processing large datasets,
which is critical for handling the complexities of the
HIGGS dataset. By incorporating Velox, we anticipate a
more efficient data management system that can handle
larger datasets more effectively than the current
methodologies. Velox will enable smarter data fetching and
storage techniques, reducing the overhead and latency
typically associated with massive datasets.

With Velox's optimized data processing functions, the
time required for preprocessing and feature extraction
phases is expected to decrease significantly. This
acceleration will directly contribute to faster overall
training times and more dynamic model iteration cycles.

In the longer term, our vision extends to creating a
comprehensive framework that not only accelerates
decision tree training but also sets new benchmarks in the
processing and analysis of large-scale datasets across
various domains. This framework will incorporate
feedback loops and adaptive learning strategies to
continually optimize performance in real-time, a step
forward in achieving Al-driven data analytics platforms
that are both powerful and user-friendly.

Thus, the integration of Velox represents a critical step
forward in our project, promising to bring substantial

improvements in data management and processing
efficiency. This enhancement is expected to pave the way
for broader applications and innovations in the field of
machine learning, particularly in handling datasets of
unprecedented scale and complexity.

XI. REFERENCES

[1] Hong Guan, Saif Masood, Mahidhar Dwarampudi, Venkatesh
Gunda, Hong Min, Lei Yu, Soham Nag, and Jia Zou. 2023. A
Comparison of End-to-End Decision Forest Inference Pipelines.
In Proceedings of the 2023 ACM Symposium on Cloud
Computing (SoCC '23). Association for Computing Machinery,
New York, NY, USA, 200-215.

https://doi.org/10.1145/3620678.3624656

[2] Accelerating random forests up to 45x using cuml. NVIDIA
Technical Blog. (2022, August 21).
https://developer.nvidia.com/blog/accelerating-random-forests-up
-to-45x-using-cuml/

[3] Sharp, T. (2008). Implementing Decision Trees and Forests on
a GPU. In: Forsyth, D., Torr, P, Zisserman, A. (eds) Computer
Vision — ECCV 2008. ECCV 2008. Lecture Notes in Computer
Science, vol 5305. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-88693-8 44

[4] Zhuang, Yufan, et al. Learning a Decision Tree Algorithm
with Transformers. arXiv:2402.03774, arXiv, 6 Feb. 2024.
arXiv.org, http://arxiv.org/abs/2402.03774.

[5] ATLAS Collaboration. Dataset from the ATLAS Higgs Boson
Machine Learning Challenge 2014.

[6] ‘Decision Tree Algorithm, Explained’. KDnuggets,
https://www.kdnuggets.com/decision-tree-algorithm-explained.
Accessed 28 Apr. 2024.

[7] Bensakhria, Ayoub. (2023). Accelerating Higgs Boson Signal
Classification ~ Using Advanced Computing Platforms.
10.13140/RG.2.2.15996.31363.

https://doi.org/10.1145/3620678.3624656
https://doi.org/10.1007/978-3-540-88693-8_44
http://arxiv.org/abs/2402.03774

