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Abstract—The task of image captioning has been widely
explored in computer vision research; however, there is a notable
lack of comprehensive comparative performance analysis across
different libraries for image captioning models. This report aims
to address this gap by conducting a comparative analysis of the
performance between the TensorFlow and PyTorch frameworks
on a large data set using a complex CNN-LSTM model. By
solving this problem, we aim to provide valuable insights into the
relative strengths and weaknesses of these frameworks for image
captioning applications. Through rigorous experimentation and
evaluation, we seek to facilitate informed decision-making regard-
ing the choice of framework for image captioning tasks, thereby
advancing the state-of-the-art in computer vision research.

Index Terms—Machine learning, Image Captioning, PyTorch,
Tensorflow.

I. INTRODUCTION

Machine learning for image captioning using PyTorch
or TensorFlow represents a groundbreaking approach to
understanding visual content. These frameworks leverage
deep learning models, such as Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN),
to automatically generate descriptive captions for images.
PyTorch and TensorFlow offer powerful tools and libraries
that streamline the development of image captioning models,
making it accessible to both researchers and practitioners.
With PyTorch’s dynamic computation graph and TensorFlow’s
static graph execution, developers can choose the framework
that best suits their preferences and requirements. By training
on large data sets of images paired with corresponding
captions, these models learn to associate visual features with
textual descriptions, enabling applications in image indexing,
content retrieval, and accessibility for visually impaired
individuals. As machine learning continues to advance,
the field of image captioning holds promise for enhancing
human-computer interaction and understanding visual content
in diverse domains.

In this study, we undertake a comparative analysis of
PyTorch and TensorFlow frameworks for image captioning,
focusing on Long Short-Term Memory (LSTM) networks.
Our objective is to evaluate their performance across diverse
datasets, notably Flickr8k, Flickr30k and MS COCO 2017,
under consistent model architecture and hyper-parameters. To
ensure impartiality, we maintain uniformity in architectural
design and parameter configurations across both frameworks.
Given the scarcity of pre-trained models tailored explicitly
for image captioning, we embark on crafting our bespoke
architecture, adopting identical hyper-parameters in both
PyTorch and TensorFlow. By adopting this approach, we aim
to provide an insightful comparison, shedding light on the
relative strengths and weaknesses of each framework in the
context of image captioning tasks. This study helps bridge the
gap in existing literature, offering valuable insights into the
practical implications of employing PyTorch and TensorFlow
for image captioning applications.

II. PROBLEM DESCRIPTION

The problem of image captioning, though well-established,
faces a critical gap in the form of comprehensive performance
evaluations across various deep learning frameworks. Despite
the rapid progress in this domain, the absence of systematic
comparisons between leading frameworks such as PyTorch
and TensorFlow remains conspicuous. This dearth of research
significantly impedes informed decision-making regarding
framework selection for image captioning tasks. The lack of
empirical evidence on the relative strengths and weaknesses
of PyTorch and TensorFlow in the context of image
captioning poses a substantial challenge to practitioners and
researchers alike. Consequently, there is a pressing need for
rigorous comparative studies to elucidate the performance
discrepancies between these frameworks and facilitate more
informed decisions in the development of image captioning



applications.

III. LITERATURE REVIEW

Image captioning has garnered significant attention in recent
years, with various approaches proposed to tackle the task
effectively. Long Short-Term Memory (LSTM) networks have
emerged as a popular choice for generating descriptive cap-
tions due to their ability to capture long-range dependencies in
sequential data. LSTM networks, with their gated architecture,
are particularly effective in modeling sequential data and have
been successfully applied to image captioning tasks.

• Theoretical Overview of LSTM: Long Short-Term
Memory (LSTM) networks are a type of recurrent
neural network (RNN) designed to address the vanishing
gradient problem in traditional RNNs. LSTMs utilize
a memory cell and various gates (input, output, and
forget gates) to selectively retain or forget information
over time. This capability allows LSTMs to capture
long-range dependencies in sequential data, making them
suitable for tasks like image captioning.

• How LSTM is used for Image Captioning: In image
captioning, LSTMs are used to generate descriptive
captions for input images. The process involves
encoding the image into a fixed-length feature vector
using a convolutional neural network (CNN) and then
decoding this feature vector into a sequence of words
using an LSTM network. By training the model on paired
image-caption datasets, the LSTM learns to associate
visual features with corresponding textual descriptions,
enabling it to generate accurate and contextually relevant
captions for new images. [1].

The model that we’ll be exploring is popularly known as
the CNN-LSTM model outlined in the research paper titled
“Learning CNN-LSTM Architectures for Image Caption
Generation” and is specifically designed for sequence
prediction problems for datasets with spatial features like
images and videos. As explained above, This architecture
involves using Convolutional Neural Network (CNN) layers
for feature extraction on input data combined with LSTMs to
perform sequence prediction on the feature vectors. In short,
CNN LSTMs are a class of models that are both spatially
and temporally deep and sit at the boundary of Computer
Vision and Natural Language Processing. These models
have enormous potential and are being increasingly used for
many sophisticated tasks such as text classification, video
conversion, and so on.

• Effectiveness of LSTM: LSTMs are effective for image
captioning due to their ability to capture long-range
dependencies and model sequential data effectively. [6]
Unlike traditional RNNs, LSTMs can remember relevant
information over longer sequences, resulting in more

coherent and contextually relevant captions. Additionally,
the gated architecture of LSTMs enables them to selec-
tively retain or discard information, allowing for more
precise control over the caption generation process.

Despite the effectiveness of LSTM networks, there is a
notable lack of pre-trained models specifically tailored for
image captioning. While pre-trained models exist for tasks
like image classification and object detection, there is a gap
in the availability of pre-trained models for image captioning.
One notable exception is the BLIP (Bottom-Up and Top-
Down Image Parser) model by Salesforce, but its TensorFlow
implementation is not widely available or documented.
Datasets such as Flickr8k, Flickr30k, and MS COCO have
been widely used for training and evaluating image captioning
models. [5]. These datasets provide a diverse range of images
along with human-annotated captions, making them suitable
for benchmarking different approaches to image captioning.

• Brief introduction to Pytorch: PyTorch is a widely-
used open-source machine learning library renowned
for its flexibility, simplicity, and dynamic computation
graph capabilities. It offers a seamless experience
for both research and production-level deployment of
deep learning models. One of its standout features is
its dynamic computation graph, allowing for intuitive
and agile model development through imperative
programming. PyTorch’s elegant and Pythonic interface
enables rapid prototyping and experimentation, making
it a favorite among researchers and practitioners alike.
Its strong community support, extensive documentation,
and integration with popular libraries such as NumPy
further contribute to its appeal. With its emphasis on
simplicity, PyTorch has become a go-to framework for
building state-of-the-art neural networks across various
domains, from computer vision and natural language
processing to reinforcement learning and beyond.

• Brief introduction to Tensorflow: TensorFlow 2.0 repre-
sents a significant evolution of the popular deep learning
framework, focusing on simplicity, ease of use, and
flexibility. One of the key features introduced in Ten-
sorFlow 2.0 is eager execution by default, which allows
for immediate execution of operations, making it easier
to debug and understand code. Additionally, TensorFlow
2.0 provides a more intuitive and high-level API through
tf.keras, enabling developers to quickly build and train
deep learning models with fewer lines of code. Moreover,
TensorFlow 2.0 integrates seamlessly with other popular
libraries and frameworks, facilitating interoperability and
enabling developers to leverage a wide range of tools and
resources. With improvements in performance, usability,
and compatibility, TensorFlow 2.0 has solidified its posi-
tion as a leading platform for deep learning research and
application development.

In our literature review, we did not come across previous



research specifically comparing the performance of image
captioning between PyTorch and TensorFlow. However, we
did find several studies that conducted comparisons on image
classification tasks using various deep learning frameworks.
One such study presented experimental results demonstrating
the performance of different frameworks on a common image
classification benchmark dataset.

Fig. 1. Comparative performance analysis between PyTorch and TensorFlow
on training popular models.

IV. EXPERIMENTAL SETUP

The experimental setup is designed to test and compare
the performance of PyTorch and TensorFlow using a CNN-
LSTM architecture for image captioning. The aim is to train
a consistent model architecture for both the frameworks with
consistent hyper-parameters, same hardware and datasets.

Fig. 2. High level architecture design

The program execution as per the given model architecture
warrants two major steps:

• Feature Extraction: We use the popular pre-trained
model DenseNet-201, which is trained on the popular
data set ImageNet for extracting the features from all the
images in the dataset. DenseNet-201 is a highly efficient
convolutional neural network (CNN) architecture of 201
layers known for its dense connectivity patterns. These
connections facilitate better feature reuse and gradient
flow during training, resulting in more effective feature
representation learning. By leveraging the hierarchical
representations learned by DenseNet-201 on large-scale

image datasets, the model can capture intricate details and
semantic information necessary for generating accurate
captions. The dense connectivity within DenseNet-201
enables efficient information propagation, allowing the
model to comprehend both local and global dependencies
within images. Overall, integrating DenseNet-201 en-
hances the model’s capability to describe complex visual
scenes with precision.

• Decoding using LSTM: After that, we put an LSTM
decoder into practice and train it to produce captions
using the features that were extracted in the earlier
stage. Using the context gathered from the image features
and the words that have already been generated, the
LSTM decoder learns to anticipate the next word in
the caption. The decoder LSTM efficiently captures the
linguistic structure and semantics of the captions through
this sequential generation process, guaranteeing that the
output text closely matches the visual content of the input
image. The decoder may also be modified to employ
attention mechanisms, which would let it to concentrate
on various areas of the picture while producing each
word. This would improve the model’s capacity to pro-
vide precise and contextually appropriate captions. All
things considered, the decoder LSTM functions as the
linguistic analogue of the CNN’s visual feature extraction,
bridging the semantic gap between visual information and
textual description in the image captioning task.

In order to get a conclusive and comprehensive result, we
run the above model training on a variety of hardware

• Google Colab CPU: This is the least computationally
powerful hardware chosen by us and the purpose for
choosing it is to get the raw CPU performance analysis
for both the frameworks.

– CPU: Intel Xeon CPU @ 2.20GHZ
– Memory: 12.7 GB
– Storage: 108 GB SSD

• Google Colab GPU: This is the standard tesla T4
GPU model provided by Google Colab. The purpose of
choosing this hardware is to get the raw baseline GPU
performance analysis for both the frameworks.

– GPU: Nvidia Tesla T4
– GPU Memory: 15 GB
– Storage: 108 GB SSD

• ASU SOL CPU: We also trained our models using
the SOL supercomputer at ASU using the most power-
ful CPU available. This compute environment provides
performance analysis of both frameworks on the most
powerful CPU available

– CPU: AMD EPYC 7413 24-core processor
– Memory: 16 GB
– Storage: 1 TB SSD

• ASU SOL GPU: We also trained our models using
the SOL supercomputer at ASU using the most pow-
erful GPU available. This compute environment pro-



vides performance analysis of both frameworks in high-
performance computing environments

– GPU: Nvidia A100
– GPU Memory: 80 GB
– Storage: 1 TB SSD

In order to achieve our objectives we have incorporated
usage of several softwares and tools to achieve the best and
most accurate results:

• Python [v3.10.12]: Python is the preferred choice of
programming language due to ease of prototyping and
support for both TensorFlow and PyTorch.

• TensorFlow [v2.15.0]: TensorFlow 2.0 is used in the
default eager mode to execute the training.

• PyTorch [v2.2.1 + cu121]: PyTorch latest version is used
in the default eager mode to execute the training.

• TorchVision [v0.17.1 + cu121]: TorchVision is a com-
puter vision library in PyTorch, providing tools and
utilities for tasks like image preprocessing, dataset han-
dling, and pre-trained models for tasks such as image
classification, object detection, and segmentation.

• Pandas [v2.0.3]: Pandas is a Python library used for
data manipulation and analysis, offering powerful data
structures and functions for handling structured data, such
as tabular data and time series. It’s widely used for
tasks like data cleaning, transformation, and exploration,
making it an essential tool for data scientists and analysts.

• Scalene [v1.5.19]: Scalene is a high-performance CPU,
GPU and memory profiler for Python that does a number
of things that other Python profilers do not and cannot
do. It runs orders of magnitude faster than many other
profilers while delivering far more detailed information.
It is also the first profiler ever to incorporate AI-powered
proposed optimizations.

V. DATASET DESCRIPTION

For the purpose of analysis, we have chosen a set of
3 popular image datasets of varying size and varieties for
training purpose

• Flickr8k: The Flickr8k is the smallest dataset out of all
and has the following specifications:

– 8,092 images
– Five captions per image
– 256 X 256 pixels per image

• Flickr30k: The Flickr30k has the following specifica-
tions:

– 30,000 images
– Five captions per image
– 256 X 256 pixels per image

• MS COCO 2017: The MS COCO dataset by Microsoft
is the largest dataset we tested and has the following
specifications:

– 118,287 images
– 591,753 captions
– Varying image sizes with some exceeding 400 X 400

in size

VI. METHODOLOGY

As described in great detail in the experimental setup, our
CNN-LSTM model architecture consists of two major steps
i.e. feature extraction and training the LSTM for generating
captions. As a part of the first step, we explicitly extract the
most important features from all the images in the dataset and
then use the extracted features to train the LSTM model for
caption generation.
We measure performance benchmarks for both the libraries
based on the below parameters.

• Throughput: Throughput helps us understand the
amount of work done by the machine in a given unit of
time. It is a direct measure of the speed of computation
and provides us with an early estimate of the amount of
time required to complete the job. We define throughput
as number of images processed in a given unit of time.

• Memory Consumption: Memory consumption is an
important parameter for identifying how efficient a frame-
work is in terms of resource utilization. A higher memory
consumption indicates a potentially bad performance and
may lead to a bottleneck. A lower memory consumption
indicates that the given framework is more efficient with
managing the available resources and effectively frees up
resources not needed anymore.

• Total Training Time: Total training is the most conclu-
sive parameter as it gives us the direct measure of the time
taken to complete a job. The main goal of this paper is
to provide with this estimate across a variety of hardware
and datasets to provide an accurate result.

We tested the Flickr8k data set on both the SOL supercom-
puter and Google Colab using PyTorch and TensorFlow. For
the rest of the datasets i.e. Flickr30k and MS COCO, we tested
them only on the SOL supercomputer using both frameworks.

The decided hyperparameters for all the datasets can be
found in the referenced image below

Fig. 3. Hyperparameters chosen for each dataset

In the following, we can find the structures of the decoder
model for all the data sets and get a detailed analysis of the
number of training parameters per data set and the model sizes
per data set. We have a consistent model architecture and size
for both the PyTorch and TensorFlow frameworks.

Fig. 4. LSTM-model Parameter Counts for the three datasets chosen



Fig. 5. Model structure for Flickr8k dataset

Fig. 6. Model structure for Flickr30k dataset

Fig. 7. Model structure for MS COCO dataset

VII. RESULTS

After completing the training using both TensorFlow and
Pytorch conclusively on various datasets and hardwares, we re-
ceived definitive results for performance. For feature extraction
since we use pre-trained models, we do not get a comparative
analysis for training in both frameworks. However, we were
able to attain benchmarking results across different sets of
hardware for different datasets.

Fig. 8. Performance across different hardware for feature extraction of images
using DenseNet-201

As we can see, MS COCO takes the highest time for feature
extraction as expected given a huge dataset size.

We obtained a conclusive comparative analysis between
PyTorch and TensorFlow on training the LSTM decoder for
caption generation. While training, we achieved a validation
loss of 3.6% on each execution for all our setups.

Fig. 9. Comparative analysis of images/sec for PyTorch and TensorFlow

As we can see, TensorFlow has a marginally higher through-
put/second than PyTorch across all data sets and hardware. The
highest difference can be observed for Flickr8K data set on
SOL supercomputer where TensorFlow throughputs an average
of 23 images more than PyTorch per second. Flickr8k dataset
has consistently sized images of 256 X 256 dimensions and
thus provides a reliable measure to indicate our result.

We can notice in Figure 9. that PyTorch has slightly lesser
GPU memory consumption than TensorFlow. This result is
expected as TensorFlow has a higher throughput indicating that
the memory consumption would be higher. However, it could
also mean that PyTorch has a better memory management



Fig. 10. Comparative analysis of GPU memory consumption for PyTorch and
TensorFlow

overall and that it may lead to a better performance for even
larger dataset due to better resource utilization!

Fig. 11. Comparative analysis of Total Training Time for PyTorch and
TensorFlow

As we can see in Figure 10. TensorFlow is marginally faster
than PyTorch in terms of training completion time across
all hardware and data sets. This result is inline with our
expectations as TensorFlow had a higher throughput as well.

VIII. CONCLUSION

In this project, we have conducted experimental validation
of performance for TensorFlow and PyTorch in Image Cap-
tioning application using CNN-LSTM model. When compar-
ing the frameworks, we can conclude that both have a very
closely similar performance with TensorFlow having slightly
better metrics. We attribute this result to the fact that these
tools offload most of the computation to the same version
of the cuDNN and cuBLAS libraries. The decision to choose

either frameworks cannot be made on the basis of performance
as there is no significant difference observed between the two.
Therefore, a decision to use either frameworks can be made
based on the qualitative user-experience and user comfort
in using either frameworks. For this study, we found the
qualitative user experience to be better with TensorFlow due to
its integration with easy-to-use Keras API. Although we found
TensorFlow to perform better qualitatively in our tests, we
encountered an issue where it would randomly freeze during
the middle of an epoch when using a GPU. This issue occurred
only once across all our tests, and other users have reported
experiencing the same problem. [15]

IX. FUTURE WORK

Future work for this project could involve testing the same
data sets on a distributed data architecture and incorporation
of data-parallelism. We also plan on trying this same
experiment with different batch sizes to check if we are able
to find any further evidence supporting our results. A better
approach would be to extend this experiment to use a larger
data set such as the Google Captions dataset containing over
30 million images. We also plan to extend the experiments to
the task of inferencing for image captioning.
An interesting avenue lies in the fact that PyTorch has a
slightly better GPU memory management than TensorFlow.
Thus, it is possible that the results might be different for
larger datasets where PyTorch may potentially perform better
due to efficient memory management than TensorFlow. Given
the opportunity, we would be inclined to perform the same
experiment for the Google Captions dataset using better
computational results.
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