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Problem Statement

In the rapidly evolving field of machine learning, selecting an efficient framework is crucial for
optimizing resource usage and improving execution efficiency. This report aims to compare three popular
machine learning frameworks—Velox, PyTorch, and TensorFlow—on their performance in a standard
image classification task using the MNIST dataset, which consists of 28x28 pixel grayscale images of
handwritten digits. We conducted a detailed evaluation of how Velox, PyTorch, and TensorFlow handled
various machine learning workloads, including Batch Normalization, Dropout, and Embedding, focusing
on their impact on execution time and memory usage. The findings from this comparison will guide
developers and businesses in choosing the most suitable framework for their specific needs, thus
enhancing model performance while minimizing computational costs and resource utilization.

Literature Review

In the field of machine learning, the choice of framework significantly affects the efficiency and
effectiveness of model training. Recent studies have focused on comparing the performance metrics of
popular frameworks like PyTorch and TensorFlow across various computational environments. For
instance, a detailed evaluation using the MNIST dataset showcased TensorFlow's superior performance in
terms of training speed and energy efficiency on diverse hardware platforms, including AMD Ryzen
CPU, Nvidia RTX GPU, and Apple M1 SoC [1]. This finding emphasizes the importance of framework
optimization and compatibility with different computing environments, suggesting TensorFlow's
advantage in scenarios that demand high efficiency and low power consumption.

On the other hand, another study examined the differences in training performance between TensorFlow
and PyTorch within a single GPU environment [2]. This research evaluated the frameworks across a range
of neural network models for tasks in computer vision, speech recognition, and natural language
processing. The study identified key factors influencing performance, such as kernel implementations and
memory management, providing valuable insights for practitioners when choosing a framework. The
nuances in performance highlighted by this study underscore the critical role of task-specific requirements
and resource management in selecting a framework [2].

These studies lay the groundwork for further exploration into how different machine learning
frameworks, including the emerging Velox, perform across various domains such as image classification,
natural language processing, and time series forecasting. Our research builds on these insights by
comparing Velox with PyTorch and TensorFlow, focusing on aspects such as resource utilization, training
time, and overall efficiency in handling machine learning workloads. By analyzing the strengths and
limitations of each framework in specific contexts, our study aims to offer a detailed understanding of



their applicability to different machine learning tasks, thus guiding future framework selection and
optimization efforts in the field.

Proposed Method and Algorithm

In this study, we focus on evaluating and comparing the performance of three prominent machine learning
frameworks: Velox, PyTorch, and TensorFlow. Our primary evaluation metrics were execution time and
memory usage, which we assessed by calculating averages based on 100 runs to ensure accuracy in
measuring each framework's efficiency under various workloads.

We implemented a straightforward testing method, running a two-layer neural network across all
frameworks with consistent input parameters—1000 samples and 500 dimensions—utilizing the MNIST
dataset for image classification tasks. This network includes one hidden layer with ReLU activation and
an output layer with softmax activation. Additionally, we explore how each framework handles additional
machine learning workloads such as Batch Normalization, Dropout, and Embedding, to provide a
comprehensive performance comparison.

Our hypothesis was that there would be notable differences in execution time and memory usage among
the frameworks, especially when managing complex tasks like image classification combined with other
machine learning workloads. We find that frameworks with superior memory management and execution
optimization demonstrate enhanced performance. These differences provide valuable insights, guiding the
selection of the most suitable framework for specific machine learning tasks.

This research provided a detailed assessment of each framework's performance, including graphical
representations that visually demonstrated execution time and memory usage across various machine
learning workloads.

Experimental Environment and Setup

We ensured the accuracy and reproducibility of our experiments by meticulously detailing the hardware
and software environments used. The hardware setup included an AMD Ryzen 9 processor, which has 8
cores and a core speed of 4GHz, providing robust computational power. Additionally, the system was
equipped with 16 GB of RAM, accommodating the extensive data processing and computational demands
of complex models.

For the software setup, all experiments were conducted on the Linux operating system, known for its
stability and efficiency. To maintain consistency across tests, we utilized Docker containers for deploying
and running each of the machine learning frameworks. This method ensured a uniform and isolated
environment, reducing potential variability that could impact the experimental results.

Furthermore, we standardized the configuration settings across the three frameworks: Velox, PyTorch, and
TensorFlow. Each framework was set up to use the same two-layer neural network architecture, which
included one hidden layer with ReLU activation and an output layer with softmax activation. The training
and testing procedures were also uniform, with the same number of training iterations, batch size, and
learning rate applied to ensure that each framework operated under identical conditions.



These careful considerations in setting up the experimental environment allowed us to conduct a fair and
controlled comparison of the frameworks, providing clear insights into their performance and establishing
a reliable foundation for future research.

Data Used for Experiments

We utilized the MNIST dataset for our experiments, a public dataset extensively used for benchmarking
machine learning models in image classification tasks. Developed by the United States National Institute
of Standards and Technology (NIST), the MNIST dataset serves as a standardized platform enabling
researchers to test and compare various machine learning algorithms.

The structure of the dataset comprises 70,000 grayscale images of handwritten digits, each 28x28 pixels
in size. It is segmented into two subsets: 60,000 images for training and 10,000 for testing, with each
image labeled according to the digit it represents, from O to 9.

To prepare the data for effective model training, we carried out a series of preprocessing steps:
1. Normalization: We normalized all pixel values to a range between 0 and 1, enhancing the training
process's speed and stability.

2. Reshaping: The image data was converted from a two-dimensional array format to a
one-dimensional vector format, making it suitable for neural network input.

These preprocessing measures ensured the data's consistency and applicability, laying a solid foundation
for the validity and reproducibility of our experiments.

Experimental Results
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Figure 1. Batch Normalization Performance Figure 2. Dropout Performance



Embedding Performance Prediction time and memory usage on MNIST (1000 samples)
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In the experiment, we compared the performance of three machine learning frameworks across various
ML workloads. The results revealed that Velox achieves notable memory savings in tasks such as batch
normalization, dropout, and embedding. This characteristic makes Velox potentially more suitable for
environments where memory resources are limited.

However, it was also observed that Velox's low memory usage might compromise its execution speed,
especially in more complex machine learning workloads. In contrast, while PyTorch and TensorFlow
might take longer in execution times, they do not offer the same level of memory efficiency as Velox.

Overall, the choice of the right machine learning framework should be based on the specific needs of the
application. If memory resources are a constraint, Velox could be a preferred option; however, for
applications where execution speed is a priority, PyTorch or TensorFlow might be more appropriate. This
experiment provides deeper insights into the performance characteristics of each framework, helping
guide future framework selection and optimization efforts.

Conclusion

This study conducted a detailed comparison of Velox's preprocessing performance against other
frameworks. We delved into its efficiency in running neural network models. Remarkably, Velox emerged
as a frontrunner in prediction speed for neural network models while consuming less memory compared
to PyTorch and Tensorflow. This finding underscores Velox's prowess in optimizing resource utilization
without compromising on computational speed, positioning it as a highly competitive choice for
deploying neural network models in production environments.

In addition, we explored Velox's capabilities in resource management, finding it to perform well in terms
of memory usage and processing speed, which is crucial for running large machine learning models. The
results demonstrate that Velox exhibits superior performance in preprocessing large datasets, particularly
in terms of efficiency during data cleaning and transformation processes.

Our attempts to utilize Velox for building models beyond neural networks revealed that while Velox
performs adequately with some model types, its performance could be improved in scenarios involving



greater complexity or larger data volumes. This indicates that Velox, as a versatile machine learning
framework, is broadly applicable but may require further optimization for specific applications.

Future Work

For future research directions, it is recommended to further explore optimization techniques for Velox in
different types of data preprocessing, particularly with unstructured data. Additionally, extending research
into Velox's resource management capabilities, especially its performance in multitasking and parallel
processing environments, would be beneficial.

Moreover, future studies should consider expanding the use of Velox to build a wider variety of machine
learning models, such as decision trees and ensemble methods, and assess its suitability and performance
across different machine learning tasks. These studies will provide a more comprehensive evaluation of
Velox's performance and offer theoretical and empirical foundations for its improvement in practical
applications.
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