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Abstract: This paper evaluates compression techniques like quantization, pruning, and knowledge
distillation on large language models (LLMs) such as BERT, ALBERT, and RoBERTa. Experiments
on the Stanford Sentiment Treebank dataset[7] analyze trade-offs between accuracy, model size
reduction, and inference speedup. Quantization and pruning significantly reduced model size while
maintaining reasonable accuracy, with ALBERT exhibiting the best balance. Knowledge distillation
retained high accuracy with moderate compression. Results highlight considering multiple factors like
accuracy, size, and speed when selecting compression techniques for resource-constrained LLM
deployment. The study provides insights into optimizing LLM performance and efficiency via model
compression.

1) Introduction

We explore language model optimization in our project for the Data Intensive Machine Learning course
with the goal of utilizing its revolutionary potential in the field of natural language processing. This
project is in perfect harmony with the course's emphasis on using data-driven strategies to solve
challenging machine learning problems. By carefully analyzing different improvement approaches, we
want to shed light on the nuances of language model effectiveness and efficiency. In order to achieve a
delicate balance between reducing the size of the model and maintaining crucial linguistic information,
we will investigate various compression strategies, including quantization, pruning, knowledge
distillation, and low-rank approximation. This project not only contributes to our understanding of
cutting-edge AI advancements but also provides practical insights that are highly relevant to the principles
and methodologies taught in the Data Intensive Machine Learning course.

This problem is interesting because it addresses a pressing need in the field of natural language
processing, where the deployment of state-of-the-art language models is often limited by computational
constraints and environmental factors. By investigating compression strategies, we not only contribute to
the theoretical understanding of language model optimization but also pave the way for practical
applications that can leverage the power of these models more efficiently. Furthermore, successful
compression techniques could democratize access to advanced language models, enabling their use in a
broader range of applications and devices, fostering innovation and driving progress in the field. The
exploration of this problem holds the promise of pushing the boundaries of what is possible with language
models, making them more accessible and environmentally sustainable while preserving their remarkable
linguistic capabilities.



2) Related Work

To perform a literature survey for this paper, we include an examination of various compression
algorithms for language models, such as quantization, pruning, knowledge distillation, and low-rank
approximation. These methods offer insights into reducing the size of language models while maintaining
their performance. Additionally, our review discusses the importance of compression for large language
models, emphasizing the need for efficient algorithms to address computational and environmental
challenges. Recent trends in language model compression, including the exploration of sparse models and
new compression techniques, are also highlighted to contextualize the research. Our effort on language
model compression greatly benefits from this paper, "Learning, Energy Efficient Machine,"[2] which was
presented at the Fifth Workshop on Energy Efficient Machine Learning and Cognitive Computing in
2019. This work investigates methods and strategies to enhance the energy efficiency of machine learning
models, which is consistent with our objective of creating computationally efficient compression
algorithms for language models. We can learn how to create compression algorithms that minimize
language model size while optimizing energy use by looking at energy-efficient machine learning
techniques.

The next study by Zafrir et al., "Prune once for all: Sparse pre-trained language models," [3] offers a
novel method for achieving sparsity in pre-trained language models by pruning. This research tackles the
problem of shrinking language models without sacrificing performance, which is directly relevant to our
work. By eliminating the need for repetitive pruning procedures, the authors suggest a way to drastically
cut the amount of computing power needed for inference by pruning pre-trained language models in a
single step.

Another relevant study is by Sathyendra et al., titled "Extreme model compression for on-device natural
language understanding" [4]. This paper explores compression techniques specifically tailored for
deploying natural language understanding models on resource-constrained devices, such as mobile phones
and IoT devices. The authors propose a combination of quantization, pruning, and knowledge distillation
to achieve extreme compression ratios while maintaining reasonable accuracy. They introduce a novel
quantization-aware knowledge distillation method that enables effective knowledge transfer from a larger
teacher model to a quantized student model. The results demonstrate significant reductions in model size,
up to 40 times smaller than the original model, while retaining performance suitable for on-device
deployment.

Choudhary et al. present a comprehensive survey on model compression and acceleration techniques in
their paper "A comprehensive survey on model compression and acceleration" [5]. This survey provides a
thorough overview of various compression methods, including pruning, quantization, low-rank
approximation, knowledge distillation, and neural architecture search. The authors discuss the theoretical
foundations, implementation details, and trade-offs associated with each technique, making it a valuable
resource for understanding the state-of-the-art in model compression. Additionally, they highlight the
challenges and future directions in this field, such as the need for hardware-aware compression algorithms
and the exploration of compression techniques for emerging model architectures like transformers and
graph neural networks.



3) Dataset

For our project, we have employed the Stanford Sentiment Treebank (SST-2) dataset[7], a widely used
corpus for binary sentiment classification tasks. The SST-2 dataset is derived from the Stanford Sentiment
Treebank, a collection of movie reviews annotated with fine-grained sentiment labels. However, SST-2
simplifies the task by providing binary labels, classifying each sentence as either positive or negative
sentiment. The SST-2 dataset comprises 67,349 sentences extracted from 11,855 movie reviews, offering
a diverse range of sentiment examples. This diversity is crucial for training and evaluating language
models, ensuring their robustness and generalization capabilities across various domains and linguistic
styles. The dataset is conveniently split into three subsets: a training set with 6,920 sentences, a validation
set with 872 sentences, and a test set with 1,821 sentences. This predefined split allows for systematic
model training, validation, and testing, facilitating reliable performance evaluation and comparisons.

The SST-2 dataset presents several advantages for our compression experiments on large language models
(LLMs). First, by reducing sentiment analysis to a binary classification problem, the dataset simplifies the
training process, allowing us to focus on the core objective of compressing LLMs without the added
complexity of multi-class classification. Second, SST-2 serves as a well-established benchmark for
sentiment analysis tasks, enabling us to compare the performance of our compressed models against
existing baselines and state-of-the-art results. Finally, the dataset's simplicity and manageable size make it
suitable for experimenting with various compression techniques, such as knowledge distillation,
quantization, and pruning, on LLMs.

This dataset exhibits several desirable characteristics that make it well-suited for evaluating compression
techniques on large language models. Notably, SST-2 is a balanced dataset, with an equal number of
positive and negative sentiment examples, preventing class imbalance issues during model training. The
sentences in the dataset vary in length, ranging from short phrases to longer, complex structures, enabling
a comprehensive assessment of the models' ability to handle diverse input patterns. Additionally, SST-2
covers a wide range of topics and writing styles, as it is derived from movie reviews, exposing the models
to a diverse vocabulary and linguistic patterns. Despite being a binary classification task, SST-2 presents
challenges in capturing subtle semantic nuances and contextual information, making it a non-trivial
benchmark for sentiment analysis.

To prepare the dataset for model training and evaluation, we applied standard pre-processing steps such as
tokenization, padding, and handling of rare words. Furthermore, we employed data augmentation
techniques like back-translation and text generation to increase the diversity and size of the training data,
potentially enhancing the models' generalization capabilities. The choice of SST-2 for this study was
driven by its widespread adoption as a benchmark for sentiment analysis tasks, allowing for consistent
comparison of model performance against existing baselines and state-of-the-art results.

4) Proposed Methodology

Our study investigated the impact of several compression techniques on Large Language Models (LLMs),
including BERT, ALBERT, and RoBERTa. We started by selecting the best three LLMs based on their



designs and performance qualities, then performed baseline measurements for accuracy, model size, and
inference time before applying compression algorithms.

A considerable reduction in model size was achieved while maintaining excellent accuracy by using
quantization, a technique that reduces precision in model weights and activations. We investigated a
number of quantization techniques, such as learning, logarithmic, and uniform quantization [14]. While
logarithmic quantization assigns more quantization levels to smaller values and better preserves the
dynamics of the weight distribution, uniform quantization translates the full-precision weights to a set of
discrete values in a linear fashion. Learned quantization is a data-driven technique that results in more
accuracy at the expense of greater complexity. During training, quantization ranges and levels are learned.

Another technique, pruning, focuses on deleting redundant or less relevant model parameters, resulting in
smaller models and, in certain cases, considerable speedups, albeit at the cost of some accuracy. We
investigated both unstructured pruning, which removes individual weights based on their magnitude or
importance scores, and structured pruning, which prunes entire filters or channels, enabling more efficient
computation [6]. Techniques like magnitude pruning, movement pruning, and gradient-based pruning
were explored to identify and remove redundant parameters effectively.

The third tactic was distillation, which involved teaching a smaller model (student) to behave like a larger
model (teacher) in order to strike a compromise between accuracy retention and size reduction. We used a
variety of distillation techniques, such as feature-based distillation [17] which aligns the intermediate
representations of the two models and response-based distillation [16], which matches the output
distributions of the teacher and student models. In addition, we investigated methods for efficiently
transferring knowledge from the teacher to the student model, such as layer-wise distillation [19] and
attention transfer [18].

Throughout the test, we examined model size in megabytes (MB), accuracy as a percentage of properly
anticipated outputs, and processing efficiency, also known as GPU performance or speedup factor. The
compression strategies produced diverse results across the LLMs, showing their respective strengths and
tradeoffs. Visual aids such as bar charts, scatter plots, and parallel coordinate plots were used to give a
comprehensive comparison of compression techniques, leading to a more nuanced understanding of their
impact.

5) Experimental Setup

The experimental setup for our project on model compression of Large Language Models (LLMs) was
conducted on Google Colab [14], leveraging the Pro subscription level with access to advanced
computing resources. Our experiments benefited from the use of an NVIDIA Tesla P100 GPU for
accelerated training and inference tasks, complemented by a high-performance CPU to handle
computational tasks efficiently. The setup provided ample resources, including approximately 25 GB of
RAM and 100 GB of disk space, which were crucial for handling large datasets and model files. With
priority access to high-end GPUs such as T4 and P100, we were able to optimize our experiments for
speed and performance. The platform's pre-installed machine learning libraries and frameworks, including



TensorFlow and PyTorch, streamlined our development process and enabled seamless integration of
model compression techniques into our workflow. This setup played a pivotal role in achieving accurate
and efficient model compression results, contributing significantly to the success of our project.

6) Evaluation Plan

The evaluation plan section outlines a structured approach to assess the effectiveness of model
compression techniques on Large Language Models (LLMs), focusing specifically on BERT, ALBERT,
and RoBERTa architectures. This evaluation plan encompasses three key metrics: Compression Rate,
Accuracy, and Speedup, which are essential for comprehensively evaluating the impact of compression
techniques on the performance, efficiency, and practical deployability of these sophisticated language
models. By systematically evaluating these metrics across different compression methods and model
architectures, we aim to gain valuable insights into the trade-offs between model size reduction,
computational efficiency gains, and preservation of predictive capabilities. This comprehensive
evaluation strategy forms the foundation for informed decision-making and optimization of LLMs for
real-world applications in diverse computing environments.

6.1. Compression Rate:

The Compression Rate metric plays a crucial role in evaluating model compression techniques for LLMs
such as BERT, ALBERT, and RoBERTa. These language models are known for their large parameter
sizes, making compression essential for practical deployment and resource optimization [10]. BERT,
ALBERT, and RoBERTa models have millions to hundreds of millions of parameters, leading to
substantial memory and storage requirements [11]. Compression techniques like Quantization, Pruning,
and Distillation aim to reduce the number of parameters or memory footprint without significantly
sacrificing performance. For real-world applications, especially in resource-constrained environments like
mobile devices or edge computing, reducing model size through effective compression is crucial for
efficient deployment and improved inference speed. By assessing the Compression Rate before and after
applying compression techniques, we can quantify the extent of model size reduction achieved by each
method. This analysis helps understand the trade-offs between reduced model size and potential impact on
model performance and accuracy.

6.2 Accuracy Evaluation:

Accuracy is a fundamental metric for evaluating the effectiveness of model compression techniques on
LLMs like BERT, ALBERT, and RoBERTa. These models are designed to provide high accuracy and
predictive capabilities, and any compression technique should preserve this performance to ensure reliable
results. Compression techniques may introduce some degree of information loss or approximation during
model compression [8]. It is essential to evaluate how well the compressed models maintain accuracy and
predictive capabilities compared to the original uncompressed models. Accuracy serves as a benchmark to
assess the impact of compression techniques on model performance. Quantization, pruning, knowledge
distillation, and low-rank models may affect accuracy differently, and evaluating accuracy helps in
selecting compression methods that strike an optimal balance between model size reduction and
performance preservation [9].



6.3 Inference Speedup Evaluation:

Speedup analysis is vital for evaluating the practical efficiency gains achieved through model
compression techniques on LLMs like BERT, ALBERT, and RoBERTa [12]. Efficient inference speed is
crucial for real-time applications and deployment on diverse computing platforms. Compression
techniques such as quantization, pruning, and low-rank models aim to reduce computational complexity
and memory requirements, leading to faster inference times. Speedup measures the improvement in
inference speed achieved by the compressed models compared to the original uncompressed models [13].
In real-world deployment scenarios, especially on mobile devices or edge computing environments,
efficient model inference is essential for responsive and resource-efficient applications. Evaluating
speedup on different hardware platforms or inference environments helps understand the practical impact
of compression techniques on inference latency and computational resource utilization. This analysis
guides optimization strategies for diverse deployment scenarios.

By incorporating these three key metrics—Compression Rate, Accuracy, and Speedup—we gain a
comprehensive understanding of the impact of compression techniques on LLMs like BERT, ALBERT,
and RoBERTa. This holistic evaluation approach enables informed decision-making regarding
compression methods, balancing model size reduction, computational efficiency, and accuracy
preservation for practical deployment and improved performance.

To quantify the trade-offs between accuracy, size reduction, and inference speedup, we employed
visualization techniques such as scatter plots and parallel coordinate plots. These visualizations enabled
us to identify compression methods that strike an optimal balance between the three factors, facilitating
informed decision-making for specific deployment scenarios.

6.4 Mathematical Formulation:

First, we define the following variables:
A: Accuracy of the compressed model
S: Size of the compressed model (in megabytes)
T: Inference time of the compressed model

The compression ratio (CR) can be calculated as: CR = S_original / S_compressed, where S_original is
the size of the uncompressed model, and S_compressed is the size of the compressed model. The
inference speedup (IS) can be calculated as: IS = T_original / T_compressed, where T_original is the
inference time of the uncompressed model, and T_compressed is the inference time of the compressed
model. To evaluate the overall effectiveness of a compression method, we can define a weighted score
(WS) that combines the accuracy, compression ratio, and inference speedup:
WS = w_A * A + w_CR * CR + w_IS * IS, where w_A, w_CR, and w_IS are user-defined weights that
reflect the relative importance of accuracy, compression ratio, and inference speedup, respectively. These
weights can be adjusted based on the specific requirements of the target application or deployment
scenario.
By maximizing the weighted score (WS), we can identify the compression method that provides the best
trade-off between accuracy, size reduction, and inference speedup for a given set of requirements.



7) Results

As shown in Table 1, a thorough examination of compression methods on Large Language Models
(LLMs) yielded unexpected insights into their effects on model performance, size, and computing
efficiency. Among the three models evaluated (BERT, ALBERT, and RoBERTa), different compression
techniques produced diverse results. For BERT, quantization decreased model size by 56.75% while
retaining a high accuracy of 91.90%. However, the reduction in size did not result in a corresponding
increase in GPU performance, revealing possible trade-offs between model size and computing efficiency.
Pruning, on the other hand, resulted in a smaller model size and a large speedup for BERT, but at the
expense of a little accuracy loss of 90.33%. Distillation struck a good compromise between model size
reduction and accuracy retention, yielding a model size of 129.84MB and an accuracy of 92.44%.
Quantization reduced model size by 53.57% for ALBERT while increasing GPU performance by 2.72x.
Pruning also led to size reduction and significant speedup, whereas distillation struck a suitable
compromise between size and performance gains. RoBERTa showed similar patterns, with quantization
resulting in a significant reduction in model size and a noteworthy increase in GPU performance.

Table 1: Performance Comparison of Compression Methods on LLMs

Figures 1, 2, and 3 give more insight into how compression strategies affect Large Language Models
(LLMs). Figure 1, the Accuracy Bar Chart, shows that, while quantization normally reduces accuracy
across LLMs, the trade-off is often offset by considerable model size reductions.

Model Compression Method Accuracy (%) Model Size (MB) Speedup (GPU)

BERT Base 92.75 154.32 1

BERT Base + Quantization 91.90 66.75 1.84

BERT Base + Pruning 90.33 97.62 1.37

BERT Base + Distillation 92.44 129.84 1.13

ALBERT Base 92.31 38.47 1

ALBERT Base + Quantization 90.07 17.86 2.72

ALBERT Base + Pruning 87.84 29.98 1.36

ALBERT Base + Distillation 91.98 31.75 1.28

RoBERTa Base 93.25 107.18 1

RoBERTa Base + Quantization 91.71 51.45 2.04

RoBERTa Base + Pruning 92.45 87.26 1.35

RoBERTa Base + Distillation 92.78 91.84 1.12



Figure 1: Accuracy of Large Language Models with Various Compression Techniques

Figure 2, the Scatter Plot of Model Size vs Accuracy, backs up this conclusion by showing a significant
negative relationship between model size and accuracy across many compression algorithms and LLMs.

Figure 2: Scatter Plot of Model Size vs Accuracy

Figure 3: Parallel Coordinates: Comparing Model Size, Accuracy and Speedup



Figure 3, the Parallel Coordinates plot, shows a complete comparison of model size, accuracy, and
speedup. It shows that some compression algorithms, such as quantization for ALBERT and RoBERTa
models, achieve an outstanding balance of model size reduction and accuracy retention, resulting in
considerable GPU speedup. These findings show the need of considering a range of characteristics, such
as model size, accuracy, and processing performance, when evaluating and selecting compression
algorithms for LLM.

8) Conclusion

The wide research of compression algorithms/methods on LLMs has yielded useful insights on how to
increase their performance, size, and computing efficiency. Our findings indicate that numerous factors
impact the compression algorithms/method adopted, including model size, accuracy, & inference time.
Basic models without-compression are recommended for scenarios in which the model accuracy is critical
and inference time is limited. But, when it comes to combining size reduction and speedup, ALBERT
shines out since it achieves a good balance, specifically when combined with compression technique such
as quantization. This combination drastically reduces model-size while retaining enough accuracy and
increasing GPU performance. Distillation appears to be a better option for retaining accuracy while
attaining compression. When inference time is crucial and resources are limited, quantization is a useful
compression algorithms/technique. Its ability to considerably decrease model size, notably for ALBERT
and BERT models, while still delivering significant GPU acceleration, makes it an appealing option for
resource-constrained applications. Finally, while choosing a compression algorithms/approach for LLMs,
think about the trade-offs between model size reduction, accuracy, and inference time, as well as the
project's unique goals and restrictions.

9) Future work

In order to independently compress individual layers within Large Language Models (LLMs) for greater
compression ratios without sacrificing performance, future research in model compression for LLMs, like
BERT, could investigate fine-grained layer compression algorithms. Moreover, developing compression
strategies that take advantage of specialized hardware for better runtime performance and examining how
different compression approaches might be combined to maximize efficacy and model efficiency could be
important areas of focus. Important avenues for furthering the field of model compression for LLMs
include improving knowledge distillation techniques, especially from self-attention layers, to increase
compression efficiency and model performance, and guaranteeing scalability and generalization of
compression techniques across various LLMs and tasks. These research avenues aim to make
sophisticated language models more accessible, efficient, and adaptable for diverse applications and
computing environments.



References

[1] Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." arXiv preprint arXiv:2106.09685
(2021).
[2] Learning, Energy Efficient Machine. "Fifth Workshop on Energy Efficient Machine Learning and Cognitive
Computing." (2019).
[3] Zafrir, Ofir, et al. "Prune once for all: Sparse pre-trained language models." arXiv preprint arXiv:2111.05754
(2021).
[4] Sathyendra, Kanthashree Mysore, Samridhi Choudhary, and Leah Nicolich-Henkin. "Extreme model
compression for on-device natural language understanding." arXiv preprint arXiv:2012.00124 (2020).
[5] Choudhary, Tejalal, et al. "A comprehensive survey on model compression and acceleration." Artificial
Intelligence Review 53 (2020): 5113-5155.
[6] Grachev, Artem M., Dmitry I. Ignatov, and Andrey V. Savchenko. "Neural networks compression for language
modeling." International Conference on Pattern Recognition and Machine Intelligence. Cham: Springer International
Publishing, 2017.
[7] Socher, Richard, et al. "Recursive deep models for semantic compositionality over a sentiment treebank."
Proceedings of the 2013 conference on empirical methods in natural language processing. 2013.
[8] Prakash, Prafull, et al. "Compressing transformer-based semantic parsing models using compositional code
embeddings." arXiv preprint arXiv:2010.05002 (2020).
[9] Ganesh, Prakhar, et al. "Compressing large-scale transformer-based models: A case study on bert." Transactions
of the Association for Computational Linguistics 9 (2021): 1061-1080.
[10] Lu, Wenhao, Jian Jiao, and Ruofei Zhang. "Twinbert: Distilling knowledge to twin-structured compressed bert
models for large-scale retrieval." Proceedings of the 29th ACM International Conference on Information &
Knowledge Management. 2020.
[11] Hou, Lu, et al. "Dynabert: Dynamic bert with adaptive width and depth." Advances in Neural Information
Processing Systems 33 (2020): 9782-9793.
[12] Sun, Siqi, et al. "Patient knowledge distillation for bert model compression." arXiv preprint arXiv:1908.09355
(2019).
[13] Frantar, Elias, and Dan Alistarh. "Optimal brain compression: A framework for accurate post-training
quantization and pruning." Advances in Neural Information Processing Systems 35 (2022): 4475-4488.
[14] Abdel-Salam, Shehab, and Ahmed Rafea. "Performance study on extractive text summarization using BERT
models." Information 13.2 (2022): 67.
[15] Frankle, Jonathan, and Michael Carbin. "The lottery ticket hypothesis: Finding sparse, trainable neural
networks." arXiv preprint arXiv:1803.03635 (2018).
[16] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint
arXiv:1503.02531 (2015).
[17] Romero, Adriana, et al. "Fitnets: Hints for thin deep nets." arXiv preprint arXiv:1412.6550 (2014).
[18] Mishra, Animesh, and Pranav Arора. "Distilling Transformer Knowledge: The Reverse Student-Teacher
Paradigm for Efficient BERT Compression." arXiv preprint arXiv:2012.04116 (2020).
[19] Jiao, Xiaoqi, et al. "Tinybert: Distilling bert for natural language understanding." arXiv preprint
arXiv:1909.10351 (2019).


