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PROBLEM STATEMENT 

With the rise of complex deep learning models, distributed learning frameworks are crucial for 
efficient training on multiple machines. However, choosing the right framework requires 
understanding their strengths and weaknesses. This project tackles this challenge by comparing 
three popular options: Uber Horovod, PyTorch, and Microsoft Deepspeed. We'll evaluate factors like 
setup difficulty, performance across different scales, user-friendliness, compatibility with deep 
learning libraries, how they handle data updates across machines, and built-in optimizations. This 
comprehensive analysis aims to provide valuable guidance for researchers and practitioners 
working in distributed machine learning. 

LITERATURE REVIEW 

Uber Horovod: 

● Horovod is an open-source library built by Uber that simplifies distributed deep learning 
training across multiple machines or GPUs. 

● It supports various deep learning frameworks, including PyTorch, TensorFlow, Keras, and 
Apache MXNet. 

● Horovod's key advantage lies in its ease of use. With minimal code changes to existing 
PyTorch training scripts, Horovod can scale training to hundreds of GPUs, significantly 
reducing training time. 

● It focuses on making distributed training accessible and leverages message passing 
interface (MPI) for communication between machines. 

PyTorch: 

● PyTorch is a popular open-source deep learning framework known for its flexibility, ease of 
use, and dynamic computational graphs. 

● It can be used for various deep learning tasks like computer vision, natural language 
processing, and recommender systems. 

● While PyTorch offers some distributed training capabilities, it might not be the most efficient 
for large-scale training on multiple GPUs or machines. 

Microsoft DeepSpeed: 

● DeepSpeed is a library developed by Microsoft specifically for PyTorch. 

● Similar to Horovod, it aims to accelerate distributed training, but with a focus on 
performance optimization within PyTorch itself. 



● DeepSpeed offers features like gradient accumulation, zero redundancy optimization, and 
mixed-precision training to improve training speed and memory usage on large models. 

● While DeepSpeed might require slightly more code modifications compared to Horovod, it 
can potentially achieve better performance on PyTorch models. 

METHODOLOGY 

1. Set up Horovod for distributed training on Tensorflow, Keras, Pytorch and Elastic to evaluate 
MNIST and CIFAR-10. 

2. Set up Deepspeed for distributing training for Custom Mixed Precision Training Handling and 
ZeRo optimization. 

3. Setup pytorch for distributed training using model parallelism. 

Our objective is to understand the working of each distributed training framework, comprehensively 
evaluate them on standard datasets and compare the results on benchmarked parameters. 

EXPERIMENTAL SETUP 

GPU Configuration: NVIDIA Titan Xp  

a. Compute capability → 6.1 
b. Video Memory Type →  GDDR5  
c. Memory → 12 GB 
d. Bus Interface → PCle 3.0 x 16 

Convolutional layer architecture: 21.8K trainable parameters 

 

Benchmarking standards → Batch size: 128, Epochs: 30  

Datasets Used 

MNIST: 

● Focus: Handwritten digits classification (0-9) 

● Type: Grayscale images (single channel) 

● Image size: 28x28 pixels 

● Number of classes: 10 (one for each digit) 



● Complexity: Relatively simple due to low resolution, grayscale format, and limited number 
of classes. A good starting point for beginners in image classification. 

CIFAR-10: 

● Focus: Object recognition of everyday objects (airplanes, cars, etc.) 

● Type: Color images (3 channels - RGB) 

● Image size: 32x32 pixels 

● Number of classes: 10 (e.g., airplanes, automobiles, birds, etc.) 

● Complexity: More complex than MNIST due to color information and depicting real-world 
objects with variations. Often used as a stepping stone to more complex datasets. 

EVALUATION RESULTS 

Uber Horovod 

1. MNIST 

  

  
GPU memory-usage Volatile GPU-util 

Tensorflow2_keras_mnist 937 MiB/12288 MiB 2% 

Pytorch_lightning_mnist 1131MiB/12288 MiB 

 
0% 

Tensorflow2_keras_mnist_elastic 1655 MiB/12288 MiB 

 
30% 

Pytorch_mnist_elastic 915 MiB/12288 MiB 

 
4% 

 

2. CIFAR-10 

  

  
GPU memory-usage Volatile GPU-util 

Tensorflow2_keras_cifar10 1639 MiB/12288 MiB 39% 

Pytorch_lightning_cifar10 1631 MiB/12288 MiB 

 
11% 

Tensorflow2_keras_cifar10_elastic 2679 MiB/12288 MiB 

 
30% 

Pytorch_cifar10_elastic 1655 MiB/12288 MiB 

 
7% 

 



 

 

 

Microsoft Deepspeed 

Internally, Deepspeed operates on the following principles. 

● Gradient Averaging: in distributed data parallel training, backward ensures that gradients 
are averaged across data parallel processes after training on a train_batch_size. 

● Loss Scaling: in FP16/mixed precision training, the DeepSpeed engine automatically 
handles scaling the loss to avoid precision loss in the gradients. 

● Learning Rate Scheduler: when using a DeepSpeed’s learning rate scheduler (specified in 
the ds_config.json file), DeepSpeed calls the step() method of the scheduler at every training 
step (when model_engine.step() is executed). When not using DeepSpeed’s learning rate 
scheduler: 



 

 



The accuracy of the network on the test set is 57%. The accuracy varies for different classes, with 
the highest accuracy observed for the "car" class (74%) and the lowest for the "cat" class (36%).

 

 

Pytorch Distributed 

 



Regardless of the GPU configuration, PyTorch distributed training demonstrated consistent output 
sizes despite variations in batch processing. The results suggest that PyTorch distributed training is 
adaptable to various CNN architectures and can effectively handle the complexities of training 
convolutional models, however, not as effectively as Deepspeed (for CIFAR-10). 

 

 

The blue bar shows the training throughput almost increases linearly with the number of workers 
from 1 to 4 workers (across two nodes). 

 

CONCLUSION  

Horovod – MNIST 

● Elastic training improves performance: Both TensorFlow Keras and PyTorch frameworks 
achieved better accuracy and training time with their elastic versions, suggesting that 
dynamically adjusting resources during training can be beneficial. 

● TensorFlow Keras excels in accuracy: The elastic TensorFlow Keras model achieved the 
highest accuracy, highlighting the effectiveness of this approach for this task. 

● PyTorch Lightning leads in throughput: While not achieving the highest accuracy, PyTorch 
Lightning's model demonstrated the best throughput, indicating its efficiency in processing 
training data. Further optimizations might be needed to improve its accuracy while 
maintaining its speed. 

Horovod – CIFAR10 

● PyTorch Lightning achieved the best results with the highest accuracy and lowest loss, 
suggesting its potential effectiveness when employing Horovod for distributed training on 
larger datasets that could benefit from it. 

● Interestingly, elastic training didn't significantly improve TensorFlow Keras or PyTorch 
models for CIFAR-10, unlike the MNIST case. This implies that the elastic approach might be 
more suitable for smaller datasets like MNIST, while CIFAR-10 may not require such dynamic 
resource adjustments. 

● PyTorch models consistently demonstrated higher throughput compared to TensorFlow 
Keras, indicating potential advantages in processing CIFAR-10 data. This efficiency aspect 



could be further amplified when leveraging Horovod for distributed training on larger 
datasets. 

Deepspeed – CIFAR10 

● Efficient Training: DeepSpeed effectively manages training on CIFAR-10. 
● Decent Accuracy: The model achieves a 57% overall accuracy on the test set. 
● Class Variability: Performance varies across classes; "car" and "ship" show higher 

accuracies, while "cat" and "bird" perform relatively poorly. 
● Optimization Techniques: DeepSpeed employs optimization strategies like gradient 

accumulation and learning rate scheduling. 
● Room for Improvement: Further analysis, including examining misclassifications and 

experimenting with architecture and hyperparameters, could enhance model performance. 
● Smooth Execution: Training progresses without errors, indicating DeepSpeed's robustness. 

Despite this, DeepSpeed demonstrates efficiency in managing the training process, offering a solid 
foundation for enhancing model performance on the CIFAR-10 dataset. 

 

Pytorch Distributed - CIFAR10 

● With 1 GPU, the model processes batches internally, resulting in smaller batch-wise 
outputs, while collectively handling larger datasets outside the GPU boundary, maintaining 
consistency in output size. 

● Transitioning to 2 GPUs enables parallel processing of larger batch sizes within each GPU, 
yet the output size remains unaffected, showcasing efficient data distribution across 
multiple GPUs. 

● Regardless of GPU configuration, the model efficiently manages input data, ensuring 
consistent output sizes despite variations in batch processing. 

 

Overall Comparison 

 

Feature Horovod DeepSpeed 
PyTorch 
Distributed 

 

Ease of Use Easiest Moderate Moderate  

Performance 
(Large) Good Excellent Good 

 

Features Limited Extensive Moderate  

Compatibility 
Multiple 
libraries PyTorch only PyTorch only 

 

Data Updates Allreduce Allreduce, ZeRO Allreduce (default)  

Optimizations Basic 
Advanced 
(ZeRO) Moderate 

 

 



 
1. Horovod scaled well for common models on multiple GPUs. 
2. DeepSpeed excelled for huge models (trillions of parameters) with memory 

optimisations. 
3. PyTorch scaled well, but DeepSpeed offers additional techniques for extreme scale. 

Our results demonstrate that smaller batch sizes, lighter models and a larger number of nodes will 
require faster GPU-to-GPU communication for distributed training to become efficient. Overall, 
Horovod, Deepspeed and Pytorch are excellent platforms for distributed training and are 
distinguishable only by their applications. Deepspeed is suitable for larger models across multiple 
nodes, Horovod is malleable, and handles both lighter and larger models effectively while Pytorch is 
lightweight and has an easy-to-access API.  
 

FUTURE WORKS 

● Bigger models, bigger datasets: Move from MNIST/CIFAR-10 to massive datasets like 
ImageNet to see how frameworks handle real-world complexity. 

● Scale it up: Don't limit testing to single machines. Evaluate how frameworks perform across 
multiple machines/GPUs for large-scale training. 

● Explore more options: Include new frameworks like Transformers or MXNet to get a broader 
picture of the distributed training landscape. 

 

REFERENCES 

1.Sergeev, Alexander, and Mike Del Balso. "Horovod: fast and easy distributed deep learning in 
TensorFlow." arXiv preprint arXiv:1802.05799 (2018). 

2.Rasley, Jeff, et al. "Deepspeed: System optimizations enable training deep learning models with 
over 100 billion parameters." Proceedings of the 26th ACM SIGKDD International Conference on 
Knowledge Discovery & Data Mining. 2020. 

3.Li, Shen, et al. "Pytorch distributed: Experiences on accelerating data parallel training." arXiv 
preprint arXiv:2006.15704 (2020). 

 

 

 

 


