
A Comparative Analysis of Distributed Training Strategies

Appari Lalith - alalith@asu.edu
Navyasri Reddy - nmallu@asu.edu

Anoop Vallabhajosyula - avallab5@asu.edu

Problem Statement:

The rising need for advanced machine learning models in a variety of real-world settings
presents significant challenges to current computing frameworks, especially as these models
become more complex and larger in size. This complexity is fueled by the increasingly
sophisticated tasks these models must handle, such as making real-time decisions in
autonomous vehicles or managing interactions between humans and machines in customer
service roles. As a result, there's a growing need for training methods that are not only efficient
but also capable of scaling up; this is where distributed training strategies become essential.

Distributed training uses multiple computing units—like GPUs or whole servers—to train neural
networks across several processors at once. This approach is crucial because it significantly
cuts down the time needed to train models and helps manage the large amounts of data these
models work with. Traditional methods, where a single machine does all the work, often fall
short because they don't have enough memory, processing power, or speed. Distributed training
steps in as a vital solution, enabling the use of bigger and more complex models that can learn
from bigger datasets more effectively.

This study looks into three main types of distributed training strategies: Data Parallelism,
Pipeline Parallelism, and Model Parallelism. Each strategy has its own unique way of handling
training tasks. The effectiveness of these strategies is assessed through rigorous evaluation of
training speed, resource utilization, and scalability across various tasks in computer vision and
natural language processing. The choice of these tasks is strategic, reflecting common yet
diverse applications of deep learning that benefit from distributed training approaches.
Computer vision tasks, such as image recognition and segmentation, and natural language
processing tasks, such as sentiment analysis and language translation, typically require
extensive computational resources and can greatly benefit from optimized training strategies.

Literature Survey:

For distributed training strategies, a comprehensive examination of existing literature is crucial
to provide context and background. The following papers covers foundational concepts,
advances in distributed computing, and specific applications in machine learning. Here’s a
detailed breakdown of the types of literature and specific works that we have reviewed:



1. Foundational Theories and Algorithms in Machine Learning:

● “Stochastic Gradient Descent” - A fundamental algorithm for training neural networks.
This algorithm updates model parameters iteratively based on the gradient of the loss
function with respect to the parameters. Understanding SGD is crucial as many
distributed training methods build upon or modify this basic approach to optimize for
parallel processing.

● “Neural Networks and Deep Learning" by Michael Nielsen - This book provides a solid
foundation in the mechanics of neural networks, which is essential for understanding
how they can be adapted to distributed training frameworks.

2. Specific Distributed Training Strategies:

● "Large Scale Distributed Deep Networks" by Jeffrey Dean et al. - This paper from
Google discusses the challenges and methodologies for training deep neural networks
across a large number of computational resources. It introduces the concept of
Downpour SGD, an asynchronous SGD variant, which is pivotal for discussions on
model scalability.

● "GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism" by
Yanping Huang et al. - Offers insights into pipeline parallelism, explaining how splitting a
model into different segments for concurrent processing can enhance training efficiency.

3. Advancements and Comparative Studies:

● "Distributed Deep Learning: A survey on recent trends and future directions" by
researchers in the field - This survey provides an overview of the latest trends in
distributed deep learning, including new frameworks and architectures developed to
facilitate more efficient distributed training.

● "Efficient Large-Scale Distributed Training of Convolutional Networks" by Adam Coates
et al. - Explores various strategies for effectively scaling up the training of convolutional
networks, a common model type in computer vision applications.

4. Practical Implementations and Framework Reviews:

● "PyTorch Distributed: Experiences on Accelerating Data Parallel Training" - A detailed
look into PyTorch's distributed training capabilities, including its DistributedDataParallel
module. Understanding this will be crucial for implementing and benchmarking data
parallelism strategies.

● "TensorFlow Distributed Deep Learning" - A guide and review of TensorFlow's
capabilities for distributed learning, providing insights into different configuration and
optimization options available within the framework.

Proposed Solution:



To perform the comparative analysis, we propose to evaluate a wide ranging models over
different sets of tasks while varying the underlying distributed training setup. We plan to perform
the following experiments to understand the distributed training approaches we have presented
in the literature survey (overlaps with the discussions from class).

● Three deep learning tasks are chosen: Image Classification, Image Segmentation and
Sentiment Analysis.

● Reasoning for choosing these set of tasks:
○ Popular use cases for deep learning models encompassing both visual and

textual domains.
○ Include both multi-class and single-class classification.
○ Well studied in normal training setups.

● For Image Classification:
○ Models: VGG, ResNet
○ Datasets: MNIST

● For Image Segmentation:
○ Models: UNet, SegNet
○ Datasets: COCO

● We propose to setup experimentation across five different training environments for
better understanding of the distributed training approaches:

○ Training on a single GPU without parallelism using various batch sizes.
○ Training using Data Parallelism on multiple GPUs.
○ Training using Model Parallelism on multiple GPUs, employing frameworks such

as DistBelief, Hogwild, or SHAT.
○ Training using Pipeline Parallelism on multiple GPUs, utilizing frameworks like

PipeDream and Gpipe.
○ The evaluation plan includes metrics such as GPU utilization, training time,

convergence rate, and cost analysis.
○ The comparison of results focuses on identifying the most suitable distributed

training approach for different tasks based on the experimental setups and
evaluation metrics.

Our evaluation will primarily focus on maximizing hardware resource utilization, measured
through metrics like GPU usage (% memory access). Time efficiency will be assessed in two
dimensions: (i) the duration for a model using a specific training approach to achieve a target
training accuracy and (ii) the average time taken to process an epoch. Additionally, we will
compare the number of epochs required for each approach to reach certain threshold
accuracies. Furthermore, we will analyze the costs associated with running these training tasks
on cloud platforms such as AWS and Google Cloud Platform. This comprehensive evaluation



will provide insights into the suitability of different distributed approaches for specific tasks
based on factors including resource utilization, time efficiency, and cost-effectiveness.

Experimental Setup and Data:

Below are the data used for training the models in different GPU environments and training
setup for each model

Samples Features Classes

CIFAR-10 60k 32 x 32 10

CIFAR-100 60k 32 x 32 100

MNIST 70k 28 x 28 10

Model # GPUs Batch Size Other Params

naive-128 1 128 -

dataparallel-256 2 256 -

gpipe-256 2 256 chunk size: 4

Training setup:

● 2 x Nvidia RTX 3070
● GPU RAM - 8 GB
● CUDA version - 12.2
● Driver version - 535.129.03

Results and Conclusion:

Time per Epoch Analysis:

The analysis of training time per epoch reveals significant insights into the efficiency of different



distributed training strategies. The TensorBoard chart, which visually represents the duration
each model took per epoch, indicates that Data Parallelism effectively reduced the training time
per epoch. This outcome was anticipated, given the inherent advantages of Data Parallelism in
distributing data across multiple GPUs, thereby enhancing computational speed by parallel
processing.

Unexpectedly, the results for GPipe presented a different scenario. Contrary to expectations that
Pipeline Parallelism would streamline processing and reduce training times, GPipe extended the
duration of each epoch considerably. This increase in time could be attributed to the overhead
associated with managing pipeline stages and synchronizing data across different segments of
the model during training.

Throughput Analysis:

Further insights were gained from analyzing the throughput, measured in samples processed
per second, across different models. The TensorBoard chart provided a clear quantitative
measure of throughput for each training configuration:

Baseline (Single GPU): Achieved a throughput of 2200 samples per second, serving as our
control metric.

DataParallel-256 (Using Data Parallelism on multiple GPUs): Showed a significant
improvement, reaching a throughput of 3000 samples per second. This increase underscores
the effectiveness of Data Parallelism in handling larger batches of data efficiently across
multiple GPUs.

GPipe: Contrary to its expected performance, GPipe managed a throughput of only 1500



samples per second. This result is notably lower than both the baseline and Data Parallelism
configurations, suggesting that while Pipeline Parallelism might offer benefits in certain
scenarios, it may also introduce inefficiencies, possibly due to the complexity of managing
micro-batches and coordinating between different pipeline stages.

Model Throughput (total) GPU Utilization
(Avg)

Memory Usage

naive-128 2275 /s 92% 1.1 GB

dataparallel-256 2968 /s 88% 1.2+1.1 GB

GPipe 1528 /s 68% 0.9+0.5 GB

Future work:

It would be valuable to explore the implications of using both homogeneous and heterogeneous
GPU configurations for distributed training. Testing with homogeneous systems, where all GPUs
are identical, could provide insights into optimizing training protocols under ideal conditions with
uniform computational resources. Conversely, heterogeneous environments that mix different
types of GPUs, or even GPUs and CPUs together, could reflect more realistic scenarios in
various industry settings. This approach would help identify adaptive strategies that optimize



performance despite hardware disparities, which is critical for deploying machine learning
solutions in diverse technological landscapes.

Additionally, expanding the research to include distributed training strategies for stateful models
like recurrent neural networks (RNNs) would address a significant gap in current methodologies.
RNNs, crucial for tasks involving sequential data such as language processing or time-series
analysis, present unique challenges in distributed settings due to their dependencies across
time steps. Investigating how different distributed training strategies can maintain the state
across multiple GPUs without compromising the temporal integrity of the model could lead to
breakthroughs in efficiently training more complex neural networks. These efforts combined
would not only enhance the understanding of distributed training dynamics but also push the
boundaries of what is achievable in advanced machine learning applications.



References:

1. Zhou, Xinyu, et al. "East: an efficient and accurate scene text detector." Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition. 2017.

2. Lin, Tsung-Yi, et al. "Microsoft coco: Common objects in context." European conference
on computer vision. Springer, Cham, 2014.

3. Recht, Benjamin et al. "Hogwild: A Lock-Free Approach to Parallelizing Stochastic
Gradient Descent." NIPS (2011).

4. Dean, Jeffrey, et al. "Large scale distributed deep networks." Advances in neural
information processing systems 25 (2012).

5. Ko, Yunyong, and Sang-Wook Kim. "SHAT: A Novel Asynchronous Training Algorithm
That Provides Fast Model Convergence in Distributed Deep Learning." Applied Sciences
12.1 (2022).

6. Narayanan, Deepak, et al. "PipeDream: generalized pipeline parallelism for DNN
training." In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
pp. 1-15. 2019.

7. Huang, Yanping, et al. "Gpipe: Efficient training of giant neural networks using pipeline
parallelism." Advances in neural information processing systems 32 (2019).

8. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition.

9. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition.

10. LeCun, Y., Cortes, C., & Burges, C. J. (2010). MNIST handwritten digit database.
11. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L.

(2014). Microsoft COCO: Common objects in context.
12. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep

bidirectional transformers for language understanding.
13. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019).

RoBERTa: A robustly optimized BERT pretraining approach.


