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I. INTRODUCTION

Cardinality estimation serves as a cornerstone in the realm
of query optimization within database systems. Effective query
optimization is critical as it directly influences the performance
of database systems by determining the most efficient exe-
cution plans. Traditionally, this process relies on statistical
approaches to estimate the ”cardinality”, or the number of
tuples that a query will return. These estimates are pivotal
for selecting the most efficient join orders, join methods, and
whether indexes should be used.

Traditional cardinality estimation methods, such as his-
tograms, sampling, and the use of statistical synopses, suffer
from several drawbacks. Primarily, they struggle to maintain
accuracy in dynamic environments where data distributions
change frequently due to updates. Additionally, these methods
often fail to capture the complexities of multi-table joins,
especially when there are correlations between columns across
tables, which are common in real-world databases.

With the integration of machine learning (ML) techniques
into this field, new horizons have opened up. ML models,
capable of learning from data patterns, offer the potential
to significantly outperform traditional methods in both static
and dynamic contexts. These models can adapt to changes
in data distributions and capture complex relationships within
the data, potentially leading to more accurate and robust cardi-
nality estimates. This report will examine the performance of
three models across two datasets to analyze the effectiveness
of ML techniques for cardinality estimation.

II. RELATED WORK

This section delves into the traditional and contemporary
methods for cardinality estimation. Traditional methods have
primarily relied on heuristic-based approaches, where esti-
mations are made based on pre-computed statistics such as
histograms and samples. These techniques, while effective
in controlled scenarios, often degrade in performance when
dealing with complex queries or rapidly changing data [1]–
[4]. In recent years, several research initiatives have focused on
leveraging machine learning to improve cardinality estimation
and it has been an active area of research [5], [6] since many
years and has recently seen a rise in popularity. The methods
for cardinality estimation can be divided in three categories:
data-driven estimators, query-driven estimators, and hybrid
estimators.

Data-driven Cardinality Estimation: Methods of data-
oriented cardinality prediction are built upon models de-
rived from the actual data. Numerous unsupervised learning
methods are utilized for this type of cardinality prediction.
For instance, probabilistic graphical models (PGM) [7]–[10]
leverage Bayesian networks to depict the joint distribution
of data, although they depend on assumptions of conditional
independence. On the other hand, methods based on kernel
density estimation (KDE) [11], [12] avoid these independence
assumptions but often struggle with subpar accuracy issues
stemming from challenges in tuning the bandwidth parameter.
NeuroCard [13] is a joint cardinality estimator that creates a
single neural density estimator over an entire database and is
one of the models which will be used for the comparative
analysis in this report.

Query-driven Cardinality Estimation: In the realm of query-
based cardinality prediction, supervised techniques use the
query workload to develop predictive models. Advances in
deep learning have led to its application in this area. Re-
search by Ortiz et al. [6] shows the application of multi-layer
perceptron neural networks and recurrent neural networks on
processed queries for effective cardinality estimation. Another
approach by Sup [14] employs a method where queries are
transformed into a feature set, with a neural network learning
the feature weights to predict selectivity.

Hybrid Cardinality Estimation: Some recent methodolo-
gies combine both the query workload and data insights
for more accurate cardinality predictions. Results from data-
driven models are now integrated with query-encoded features
in machine learning models to enhance prediction accuracy.
Dutt et al. [1] have incorporated histogram-based cardinality
estimates as additional features along with query attributes,
employing both neural networks and tree-based models for
estimation. Similarly, Kipf et al. [15] utilize results from
sampling methods as supplementary features alongside query
attributes in convolutional neural networks to refine cardinality
estimation. MSCN [15] is a multi-set convolutional network
which is tailored to representing relational query plans and
builds on sampling-based estimation and is also one of them
odels which will be used for the comparative analysis.

III. ALGORITHMS AND DATASETS

The models discussed herein, namely FCN (Fully Con-
nected Network) [16], MSCN (Multi-Set Convolutional Net-



Fig. 1. FCN Model

Fig. 2. MSCN Model

work), and NeuroCard, represent cutting-edge approaches in
learned cardinality estimation, leveraging deep learning for
improved accuracy and robustness over traditional histogram
or sampling-based approaches. The architectures of the models
are explained below:

• FCN: The FCN model in Fig. 1 [16] employs a deep
neural network architecture that processes query features
through multiple layers, enabling it to capture complex
relationships between query parameters. This model is
particularly adept at understanding inter- and intra-table
predicate correlations, making it suitable for databases
with intricate query patterns. The input to an FCN con-
sists of features derived from SQL queries. These features
typically include encoded representations of tables, joins,
selection predicates, and other query components. Each
feature might be one-hot encoded or transformed through
embedding layers if they are categorical, such as table
names or operation types. The FCN processes the input
features through each layer, where every neuron in a
layer is connected to all neurons in the previous layer,
hence the term ”fully connected.” The weights of these
connections, which are learned during training, determine
the significance of each input feature concerning the
cardinality estimate.

• MSCN: MSCN in Fig. 2 [16] utilizes a convolutional

Fig. 3. NeuroCard Model

approach to handle sets of features from different parts
of a SQL query (e.g., tables, joins, and predicates). This
model is designed to capture weaker predicate correla-
tions, which often occur in more straightforward query
scenarios or less complex database schemas. MSCN also
takes features derived from SQL queries. However, these
features are organized into sets corresponding to different
components of the query, such as sets of tables, joins, and
predicates. The architecture features convolutional layers
tailored to handle sets of input features. The convolutional
layers apply filters to the feature sets to capture local
patterns and relationships, which are crucial for under-
standing the impact of specific query components on the
overall cardinality.

• NeuroCard: NeuroCard in Fig. 3 [16] extends the ca-
pabilities of cardinality estimation by employing a deep
autoregressive model. This model predicts the number of
result tuples (cardinality) by learning the joint distribution
of table columns, thus capturing dependencies across the
database schema. It’s particularly beneficial in environ-
ments where data distributions are not well understood or
are highly variable. Unlike FCN and MSCN, NeuroCard
primarily models the data distributions rather than the
query structure. The input to NeuroCard is the data
from the database tables, particularly focusing on the
joint distribution of table columns. NeuroCard employs a
deep autoregressive model, which models each attribute
conditioned on previous attributes in a predefined order.
This approach allows the model to learn the complex
dependencies between different columns across one or
more tables.

The 2 databases, i.e., IMDB and TPC-DS have been selected
since they are used as standard databases in academia and
also provide sufficient complexity to accurately gauge the
performance of the models.

• IMDB: We have used a subset of the larger IMDB dataset,
to maintain a manageable size but realistic complexity.
It includes various tables typical of an online movie
database, such as movies, actors, directors, and ratings.
This database is ideal for testing cardinality estimation
models because it represents real-world, complex query
scenarios involving multiple joins and subqueries.

• TPC-DS: Even here, we have used a subset of the larger
TPC-DS dataset. It is a widely recognized benchmarking
tool designed to evaluate the performance of data ware-
housing solutions. It simulates a decision support system
that provides answers to business-oriented ad-hoc queries,
including those involving aggregations, joins, and nested
queries. The complexity and variety of TPC-DS’s schema
and queries make it an excellent candidate for assessing
the performance and scalability of advanced cardinality
estimation models.

The rationale behind comparing these models using the
IMDB and TPC-DS databases lies in the distinct character-
istics of these datasets. IMDB offers a real-world scenario



with potentially unpredictable query patterns and data distri-
butions, which challenges the models’ ability to generalize
from training data. In contrast, TPC-DS, with its structured
and well-defined query workload, tests the models’ efficiency
and accuracy in a controlled environment. These comparisons
aim to highlight the strengths and weaknesses of each model
under different data characteristics and query complexities.

IV. EXPERIMENTAL SETUP

This section delineates the experimental framework em-
ployed to assess the performance of the machine learning
models designed for cardinality estimation. The evaluation is
structured around rigorous training and testing protocols, lever-
aging extensive computational resources to ensure robustness
and validity of the results.

The experimental evaluations are conducted on a high-
performance computing instance on Amazon Web Services
(AWS). The primary specifications of the system include:

• CPU: Intel Xeon E5-2686 v4 (Broadwell) with 8 virtual
CPUs. This configuration provides a robust computing
backbone suitable for handling multiple threads and pro-
cesses efficiently.

• GPU: NVIDIA Tesla V100 with 16 GB memory. The
NVIDIA Tesla V100 is one of the most powerful GPUs
available in the cloud and is designed specifically for
high-end computations required in machine learning and
scientific computing. It significantly accelerates the train-
ing of neural network models.

The experimental framework is organized into two main
stages: model training and testing protocol. Each stage is
crafted to extract the most comprehensive understanding of
each model’s performance and characteristics.

Model training:
• For FCN and MSCN, features are derived from SQL

queries including attributes such as tables accessed, join
conditions, and predicate values. Features are encoded
using one-hot encoding for categorical variables (e.g., ta-
ble names, join types) and normalized continuous values
for numerical predicates. The MSCN model utilizes these
three sets of features (table, join, and predicate) to capture
a comprehensive view of the query’s structure.

• NeuroCard, which learns distributions of data, does not
use query-derived features directly but instead learns from
the data distribution observed in the database columns.
During training phase, model is trained on historical data
where it learns the likelihood of attribute values given the
values of other attributes. This is done by maximizing the
probability of the observed data under the model.

• The datasets are split into training, validation, and test
sets. The training set comprises 70% of the total data,
used for the initial fitting of the models. The validation
set accounts for 15% and is utilized for hyperparameter
tuning and to prevent overfitting during the training
process. The remaining 15% serves as the test set, used
solely for evaluating the models’ performance.

Model IMDB TPC-DS
FCN 8 15

MSCN 6 14
NeuroCard 5 10

TABLE I
LOG(Q-ERROR) RESULTS

Model IMDB TPC-DS
FCN 50 70

MSCN 40 60
NeuroCard 80 100

TABLE II
INFERENCE TIME(MS) RESULTS

Testing protocol:
• The primary metric for assessing model performance

is the Q-error, which quantifies the ratio between the
estimated cardinality and the actual cardinality, providing
a measure of prediction accuracy.

• Each model is subjected to a series of tests against both
the IMDB and TPC-DS datasets. The testing involves
executing a predefined set of queries that are representa-
tive of typical workloads in real-world applications. The
queries are designed to cover a wide range of scenarios,
from simple lookups and aggregates to complex joins and
nested queries.

V. RESULTS

The evaluation of FCN, MSCN, and NeuroCard models on
the IMDb and TPC-DS datasets provides significant insights
into the potential of machine learning techniques to enhance
cardinality estimation in database management systems. This
section analyzes the results, focusing on the models’ accuracy
as measured by Q-error and their inference times, which are
crucial for real-world deployment.

The Q-error metric in Table I, which represents the ratio of
predicted to actual cardinality, serves as a primary indicator of
estimation accuracy. A lower Q-error signifies higher accuracy
and reliability of the model in practical settings. FCN demon-
strates moderate accuracy across both datasets. While the
model performs reasonably well, the relatively higher Q-error
on TPC-DS suggests challenges in handling more complex or
larger-scale data scenarios typical of decision support systems.
MSCN shows improved accuracy over FCN, particularly with
the IMDb dataset. The convolutional approach to handling
feature sets from SQL queries appears to enhance its ability
to understand and predict cardinalities more effectively than
FCN, though it still faces difficulties with the complex queries
in TPC-DS. NeuroCard outperforms both FCN and MSCN,
achieving the lowest Q-error in both datasets. Its deep autore-
gressive approach, which models joint data distributions across
table columns, provides a more nuanced understanding of
underlying data patterns, leading to more accurate predictions.

Inference time in Table II is critical for the practical
deployment of machine learning models in live database
environments, where response time can significantly impact
user experience and system efficiency. FCN offers the best



inference times for IMDb among the models tested, suggesting
it as a viable option for environments where response time
is more critical than absolute accuracy. Despite its better
accuracy profile, MSCN provides competitive inference times,
slightly outperforming FCN in speed. This balance of accuracy
and efficiency makes MSCN a strong candidate for real-world
applications. NeuroCard, while providing the best accuracy,
also incurs the longest inference times. This trade-off high-
lights the computational cost associated with its deeper and
more complex analytical approach.

VI. CONCLUSION AND FUTURE WORK

The findings from this study underscore the potential of ma-
chine learning models to revolutionize cardinality estimation.
The improved accuracy and adaptability of these models can
significantly enhance query optimization processes, leading to
faster and more efficient database systems. The choice between
FCN, MSCN, and NeuroCard should consider specific appli-
cation requirements, including the need for accuracy versus
computational resource constraints and response time require-
ments. NeuroCard offers the best accuracy but at the cost of
slower response times, making it suitable for environments
where prediction accuracy is paramount. In contrast, FCN and
MSCN offer a better balance, potentially more suitable for
scenarios with stringent performance requirements.

Potential areas for further research include exploring hybrid
models that combine the strengths of the individual approaches
discussed, implementing these models in distributed database
environments, and enhancing their ability to incrementally
learn from new data without full retraining. The integration
of machine learning into cardinality estimation is a promising
development that could lead to substantial improvements in
database management technology. Continued research and
development in this field are essential to fully realize the
potential of these advanced ML models.
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