
Comparative Analysis of Distributed Machine Learning
Workloads using Velox, PyTorch, and TensorFlow

Rahul Deshmukh Chinmay Janwalkar Nihar Nayak
Arizona State University

{rdeshm10,cjanwalk,nnayak8}@asu.edu

Abstract

This project conducts a comprehensive comparative analysis of distributed
machine learning frameworks, specifically Velox, PyTorch, and TensorFlow, to
address the challenge of selecting the optimal framework for machine learning
workloads. Emphasizing tasks like image classification, we evaluate the
efficiency and effectiveness of these frameworks using the CIFAR-10 dataset.
The methodology involves setting up distributed environments for Velox and
single-node environments for PyTorch and TensorFlow, training convolutional
neural network models, and evaluating performance metrics. By providing
valuable insights into the strengths and limitations of these frameworks, this
analysis aids practitioners in informed decision-making for their machine
learning tasks, contributing to the advancement of distributed machine learning
research and practice.

1 Introduction

The rapid evolution of distributed machine learning frameworks has generated considerable
excitement, promising accelerated training and enhanced scalability. However, the proliferation of
frameworks such as Velox, PyTorch, and TensorFlow has introduced a challenge for practitioners:
selecting the most suitable framework for their workloads. This project addresses this challenge by
conducting a comprehensive comparative analysis of these frameworks in a distributed setting. By
focusing on image classification tasks using the CIFAR-10 dataset, our objective is to evaluate the
efficiency and effectiveness of Velox, PyTorch, and TensorFlow. Through systematic comparison,
we aim to shed light on the strengths and limitations of each framework, empowering practitioners
to make informed decisions when selecting a framework for their machine learning endeavors.
While distributed machine learning frameworks hold immense potential for accelerated training
and improved scalability, the complexity of choosing the optimal framework for specific tasks
necessitates thorough evaluation and comparison. This document presents a comparative analysis
of Velox, PyTorch, and TensorFlow in distributed settings for image classification, with the aim of
evaluating their efficiency and effectiveness using the CIFAR-10 dataset.
The rapid proliferation of distributed machine learning frameworks, including Velox, PyTorch, and
TensorFlow, has created a dilemma for practitioners who must choose the most suitable framework
for their workloads. Despite their potential for accelerated training and improved scalability, the
lack of comprehensive comparative analyses in distributed settings hinders informed
decision-making. This study aims to address this gap by systematically evaluating the efficiency
and effectiveness of Velox, PyTorch, and TensorFlow for distributed machine learning workloads,
with a focus on image classification tasks using the CIFAR-10 dataset. By providing insights into
the strengths and limitations of these frameworks, the study aims to empower practitioners to make
informed decisions when selecting a framework for their machine learning tasks.



2 Related Works

The literature survey serves as an indispensable cornerstone for the proposed research, furnishing
invaluable insights gleaned from seminal works that are pivotal to the comparative analysis of
distributed machine learning frameworks. Pedro Pedreira et al.'s seminal study introduces Velox,
Meta's unified execution engine, which assumes a central role in unraveling the intricacies of
distributed computing environments. This study accentuates Velox's multifaceted attributes,
emphasizing its efficiency, consistency, and engineering efficacy, all of which are instrumental in
facilitating accelerated training and enhanced scalability across distributed systems.
Moreover, PyTorch, as elucidated by Paszke et al., emerges as a frontrunner among deep learning
libraries. Its imperative style and commendable performance not only underscore its compatibility
with hardware accelerators but also provide valuable insights into the architectural nuances crucial
for distributed machine learning tasks. The framework's dynamic computational graph and
seamless integration with Python foster rapid prototyping and experimentation, further solidifying
its standing as a preferred choice for machine learning practitioners.
Additionally, TensorFlow, as expounded by Abadi et al., represents a watershed moment in the
realm of large-scale machine learning systems. Its adaptability to heterogeneous environments,
coupled with its remarkable scalability, underscores its pivotal role in modern data-driven
applications. TensorFlow's flexible architecture and extensive ecosystem of tools and libraries
make it a versatile platform capable of addressing a wide range of machine learning tasks, from
simple models to complex deep learning architectures.
Collectively, these seminal works underscore the critical importance of comprehensively
understanding the frameworks under scrutiny—Velox, PyTorch, and TensorFlow—in the context
of distributed machine learning. Furthermore, Krisilias et al.'s performance evaluation study
provides a nuanced perspective on the performance disparities among distributed deep learning
frameworks, thereby complementing the proposed research's comparative analysis. By
synthesizing insights from these foundational works, the literature survey lays a robust groundwork
for the proposed study, offering a comprehensive understanding of the strengths and limitations of
Velox, PyTorch, and TensorFlow in diverse distributed machine learning contexts. This
foundational knowledge is essential for informing the subsequent phases of the research, including
experimental design, data collection, and analysis, ultimately contributing to advancements in the
field of distributed machine learning.

2



3 Implementation

In this section, we provide a detailed account of the implementation phase of our comparative
analysis of distributed machine learning frameworks, focusing on Velox, PyTorch, and TensorFlow
for image classification tasks using Convolutional Neural Networks (CNNs). Our implementation
endeavors to shed light on the performance, scalability, and efficiency of these frameworks in a
distributed setting, crucial for informing practitioners' decision-making processes.
To ensure consistency and reproducibility across our experiments, we meticulously set up
computing environments for Velox and leveraged Google Colab notebooks for PyTorch and
TensorFlow implementations. Docker containers facilitated the deployment of Velox, offering an
encapsulated environment conducive to seamless experimentation. Meanwhile, Google Colab's
cloud-based infrastructure provided us with the computational power necessary for executing
PyTorch and TensorFlow experiments efficiently.
Throughout this section, we delve into the intricacies of each framework's setup, model,
algorithms, architecture designs, and training methodologies. By employing CNNs, a proven
architecture for image classification tasks, we aimed to maintain a standardized benchmark across
all frameworks, ensuring fair comparisons. With a robust implementation strategy in place, we
proceed to present our experimental results and analyses in subsequent sections, providing a
comprehensive evaluation of Velox, PyTorch, and TensorFlow performance across various metrics.
Through this endeavor, we aim to contribute valuable insights to the broader machine learning
community, facilitating informed decision-making and advancements in distributed machine
learning research and practice.

3.1 Methods and Algorithms

3.1.1 Convolutional Neural Network Architecture

For our comparative analysis across Velox, PyTorch, and TensorFlow, we employed a
Convolutional Neural Network (CNN) architecture tailored for image classification tasks on the
CIFAR-10 dataset. Below, we provide detailed information on the CNN model architecture utilized
across the three frameworks:

Convolutional Layers: Two convolutional layers were employed, each comprising 64 filters. The
kernel size for each convolutional layer was set to 3x3, facilitating local feature extraction.
Rectified Linear Unit (ReLU) activation functions were applied after each convolutional operation
to introduce non-linearity and enable better feature representation.
Max-Pooling Layer: Following the second convolutional layer, a max-pooling layer was included.
Max-pooling was performed with a pooling window size of 2x2, reducing the spatial dimensions of
the feature maps while retaining essential information.
Flatten Layer: The output from the convolutional layers was flattened into a 1D tensor using a
flatten layer. This transformation enabled the subsequent fully connected layers to receive the
flattened feature representations as input.
Dense (Fully Connected Layers): Two dense layers were incorporated for classification purposes.
The first dense layer consisted of 512 units and utilized ReLU activation, facilitating non-linear
transformations and feature extraction in the higher-dimensional space. The output layer comprised
10 units, corresponding to the number of classes in the CIFAR-10 dataset. Softmax activation was
applied to the output layer to produce probability distributions over the class labels, enabling
multi-class classification.

3.1.2 Methods and Algorithms in Tensorflow

In TensorFlow, implementing the described CNN model involves utilizing a variety of libraries and
methods available within the TensorFlow ecosystem. Firstly, TensorFlow's core library provides
essential functionalities for constructing neural network architectures, including convolutional and
dense layers, activation functions, and optimization algorithms. To create the convolutional layers
with 64 filters each and a kernel size of 3x3, the tf.keras.layers.Conv2D function can be employed,
specifying the number of filters, kernel size, and activation function (ReLU) as arguments.
Similarly, the tf.keras.layers.MaxPooling2D function facilitates the creation of the max-pooling
layer, enabling downsampling of feature maps with the specified pooling window size.

3



Following the convolutional layers, the feature maps are flattened into a 1D tensor using the
tf.keras.layers.Flatten layer, preparing them for input into the subsequent dense layers. For the
dense layers, TensorFlow's tf.keras.layers.Dense function is utilized, specifying the number of
units (512 for the first dense layer, 10 for the output layer), and the activation functions (ReLU for
the first dense layer, softmax for the output layer). Additionally, TensorFlow's high-level API,
Keras, streamlines the implementation process by offering pre-defined layers and models, along
with built-in training and evaluation functionalities. By leveraging TensorFlow's extensive library
of neural network components and Keras's user-friendly interface, constructing and training the
CNN model described can be achieved efficiently within the TensorFlow framework.

3.1.3 Methods and Algorithms in Pytorch

In PyTorch, implementing the described CNN model entails utilizing its comprehensive library of
neural network modules and optimization algorithms. PyTorch provides a flexible and intuitive
interface for building deep learning models, offering modules such as torch.nn.Conv2d for creating
convolutional layers with customizable parameters like kernel size and number of filters. By
instantiating two convolutional layers with 64 filters each and a 3x3 kernel size, followed by ReLU
activation functions, the desired feature extraction capabilities can be achieved. Additionally,
PyTorch's torch.nn.MaxPool2d module facilitates the implementation of the max-pooling layer,
enabling spatial downsampling of feature maps to capture the most salient features.
Once the convolutional layers and max-pooling layer are defined, PyTorch provides a seamless
mechanism for flattening the output feature maps into a 1D tensor using the torch.nn.Flatten
module, preparing the data for input into the subsequent fully connected layers. For the dense
layers, PyTorch's torch.nn.Linear module is employed, specifying the number of units (512 for the
first dense layer, 10 for the output layer) and activation functions (ReLU for the first dense layer,
softmax for the output layer). Furthermore, PyTorch's automatic differentiation engine simplifies
the training process by enabling dynamic computation graphs and gradient-based optimization
with optimizers such as torch.optim.SGD or torch.optim.Adam. By leveraging PyTorch's rich
library of neural network components and optimization tools, implementing and training the
described CNN model becomes straightforward and efficient within the PyTorch framework.

3.1.4 Methods and Algorithms in Velox

In the Velox framework, implementing machine learning functionalities involves a systematic
approach to construct and execute computational graphs for efficient distributed computation. The
provided C++ method, test_conv2d(), illustrates the process of defining and executing a
convolutional neural network (CNN) model within the Velox environment. Initially, parameters
such as the number of filters, filter dimensions, and input dimensions are specified, setting the
groundwork for constructing the neural network layers. Velox leverages flat vectors to handle
tensor data efficiently, facilitating seamless integration with the underlying distributed computing
infrastructure. The method utilizes input data fetched from external files and transforms them into
suitable representations for processing within the computational graph.
The core of the implementation lies in the construction of the computational graph using Velox's
neural network building utilities. The NNBuilder class enables the sequential assembly of
convolutional, max-pooling, and dense layers, along with their corresponding activation functions.
Each layer is configured with its specific parameters, including filter dimensions, weights, biases,
and activation functions. Once the computational graph is defined, Velox's execution engine
executes the graph on distributed resources, orchestrating parallel computation across the available
compute nodes. Finally, the results are retrieved and processed, demonstrating the seamless
integration of machine learning algorithms within the Velox framework for scalable and efficient
distributed computation.

3.2 Dataset

The dataset used for this project is CIFAR-10, developed by the Canadian Institute For Advanced
Research. CIFAR-10 is a widely recognized benchmark in the field of machine learning and
computer vision, containing 60,000 images divided into 10 distinct classes. Each image is 32 x 32
pixels, and they are presented in RGB format, which includes red, green, and blue color channels.
The 10 classes in CIFAR-10 represent common objects and are evenly distributed, with 6,000
images per class. These classes include Airplane, Automobile, Bird, Cat, Deer, Dog, Frog, Horse,
Ship, and Truck. This diversity provides a comprehensive testbed for image classification tasks,

4



allowing for the evaluation of machine learning models across a range of real-world scenarios.
CIFAR-10's relatively small image size and diverse classes make it ideal for experimenting with
machine learning algorithms and testing different frameworks.

3.3 Experimental Environments and Setups

3.3.1 Experimental Environments for Pytorch and Tensorflow

Google Colab offers a convenient cloud-based platform for executing Python code, particularly
suited for machine learning tasks due to its provision of free GPU and TPU acceleration,
eliminating the need for local hardware resources. To begin our experiments, we accessed Google
Colab through a web browser, utilizing Google's infrastructure for seamless execution of our
TensorFlow and PyTorch scripts. Google Colab provides a pre-configured Python environment,
including commonly used libraries such as NumPy, pandas, and scikit-learn. Additionally,
TensorFlow and PyTorch are readily available, simplifying the setup process. Leveraging Google
Colab's GPU acceleration, we configured the runtime environment to utilize GPUs for accelerated
training of our machine learning models. This step significantly reduced training time, enabling
faster iterations and experimentation.

3.3.2 Experimental Setup for Pytorch and Tensorflow

Data Preparation: We uploaded the CIFAR-10 dataset to Google Colab's virtual environment.
This dataset consists of 60,000 32x32 color images across 10 classes, making it a suitable
benchmark for image classification tasks.
Script Execution: We executed our TensorFlow and PyTorch scripts within Google Colab
notebooks, leveraging the provided GPU resources for model training. Our scripts encompassed
data preprocessing, model definition, training, and evaluation stages, ensuring a streamlined and
reproducible experimental workflow.
Monitoring and Analysis: Throughout the execution of our experiments, we monitored various
performance metrics, including training time, memory utilization, and GPU usage. Google Colab's
interface provided real-time insights into resource allocation, facilitating informed decision-making
during experimentation.

3.3.3 Challenges and Considerations for Google Colab

While Google Colab offers numerous advantages, including free access to GPU resources and a
user-friendly interface, we encountered several challenges during our experimentation:
Session Timeout: Google Colab sessions have a maximum runtime limit, after which the runtime
environment resets. To mitigate this, we periodically saved our progress and reconnected to new
sessions when necessary.
Data Persistence: Data uploaded to Google Colab's environment is not persistent across sessions.
Therefore, we stored intermediate results and trained models externally to ensure data integrity and
reproducibility.
Despite these challenges, Google Colab provided a convenient and efficient platform for
conducting our TensorFlow and PyTorch experiments, enabling us to focus on the comparative
analysis of distributed machine learning frameworks without the overhead of managing hardware
resources.

3.3.4 Experimental Environment and Setup for Velox

Base Image Selection: We begin by specifying the base image as amd64/ubuntu:22.04, ensuring
compatibility and stability for our Velox environment.
Environment Configuration: We set the working directory to /home and configure the locale
settings to ensure proper character encoding.

5



Dependency Installation: A series of apt-get install commands are executed to install necessary
dependencies, including libraries such as libopenblas-dev, libboost-all-dev, libssl-dev, and various
development tools and utilities essential for compiling and running Velox.
Python Environment Setup: We install Python 3 and essential Python packages using pip3,
including numpy, pandas, pyarrow, gdown, protobuf, and psycopg2, ensuring compatibility with
Velox and enabling data manipulation and communication with external services.
PostgreSQL Configuration: PostgreSQL 14 is installed and configured to serve as the database
backend for Velox, including setting up a default user, password, and database.
LibTorch Installation: We download and unzip the libtorch library, which serves as the C++
backend for PyTorch, facilitating integration with Velox.
EvaDB Setup: EvaDB, a component of Velox for distributed storage and querying, is cloned from
its GitHub repository and installed along with its dependencies.
Velox Setup: The Velox repository is cloned from GitHub, and necessary configurations are
applied, including setting up remote origins and defining the number of threads for compilation.
Data Preparation: Sample data required for testing Velox functionalities is downloaded and
extracted into the /home/velox/data directory.
VSCode Configuration: We download and configure the VSCode command-line interface (CLI)
for potential debugging and development purposes, providing additional flexibility for
experimentation and troubleshooting.
Once the Docker image is built using the provided Dockerfile, a Docker container can be
instantiated, providing a self-contained environment for executing Velox experiments. The Docker
container encapsulates all dependencies and configurations, ensuring consistency and
reproducibility across different computing environments.
Through Docker, we achieve a streamlined and isolated experimental setup, enabling seamless
deployment and execution of Velox within a controlled environment. This approach enhances
reproducibility and simplifies the process of conducting experiments, facilitating thorough
evaluation and analysis of Velox's performance and capabilities.

3.2.5 Challenges and Considerations for Environment Setup for Velox

One notable challenge encountered during the deployment of Velox using Docker was the strain on
computational resources, leading to frequent disconnections of the container as allocated resources
reached their limits. Managing resource allocation efficiently and ensuring sufficient computational
capacity emerged as crucial considerations for maintaining stable and uninterrupted Velox
operations within the Docker environment.

6



4 Results

4.1 Time Efficiency

The figure 1 illustrates the time taken by PyTorch, TensorFlow, and Velox to complete a specific
task, measured in seconds. Velox demonstrates the highest efficiency, taking only 0.13 seconds to
complete the task, significantly faster than the other frameworks. This rapid performance indicates
that Velox is optimized for speed, possibly due to its lightweight architecture. TensorFlow takes
1.6 seconds, indicating moderate efficiency. It completes the task faster than PyTorch but is slower
than Velox. This level of performance may be attributed to its static computation graphs, which can
lead to more optimized execution but may require additional setup. PyTorch has the longest
completion time, at 2.3 seconds. This suggests that PyTorch might be less optimized for this
specific task, potentially due to its dynamic computation graphs, which offer flexibility but can
slow down execution in some cases.

Figure 1: Comparison of Time taken

4.2 Resource Utilization

The figure 2 compares CPU and GPU utilization for PyTorch and TensorFlow during the
operation. TensorFlow exhibits higher resource utilization, with a CPU usage of 51% and a GPU
usage of 38%. This higher utilization indicates that TensorFlow is more resource-intensive, which
could contribute to its faster performance but might also lead to increased hardware costs and
scalability challenges. In contrast, PyTorch shows lower resource utilization, with a CPU usage of
32% and a GPU usage of 10%. This lower utilization suggests a more conservative approach to
resource usage, which might lead to slower performance but also offers potential benefits in terms
of scalability and hardware requirements. The difference in resource utilization between the two
frameworks reflects their distinct design philosophies and could impact their suitability for
different applications or environments.

Figure 2: Resource Utilization for PyTorch and TensorFlow

7



5 Discussion and conclusion

5.1 Issues and solutions

One of the key issues I faced while working on this project was the installation and building of
Velox. As a relatively new distributed machine learning framework, Velox presents a unique set of
challenges in terms of setup and configuration. The installation process involved resolving several
dependencies, each with its own set of requirements. This complexity led to repeated attempts and
extensive troubleshooting to ensure a successful build. In many cases, I found the available
documentation to be sparse and lacking detailed guidance, which made the resolution of these
issues even more challenging. To address the installation issues, I attended office hours to seek
guidance from experienced developers and instructors. This direct interaction was invaluable, as it
allowed me to understand the root causes of the dependencies issues and find solutions that were
not readily available online. Despite these efforts, my attempts to use the SOL supercomputer for
building and deploying Velox were unsuccessful, primarily due to compatibility issues and lack of
support for the required configurations. The lack of online resources further compounded the
problem. Unlike more established frameworks like PyTorch and TensorFlow, Velox does not have
a large community of users contributing to forums and discussion boards. This scarcity of
community support meant that many of the issues I encountered had to be solved through trial and
error, leading to significant delays in the project's timeline. Eventually, I managed to install Velox
in a Docker container, which provided a controlled environment to work within. This solution
resolved many of the dependency issues and allowed for more straightforward testing and
development. However, even with Docker, the learning curve was steep, requiring a deep
understanding of containerization and additional troubleshooting to ensure stability. Another
challenge was setting up distributed environments and ensuring consistent data distribution across
different frameworks. While PyTorch and TensorFlow have robust support for distributed training,
Velox requires more manual configuration. This extra effort in setup and data distribution
contributed to the overall complexity of the project, highlighting the differences in maturity among
the frameworks.
Despite these challenges, the project ultimately achieved its objectives. The comparative analysis
of distributed machine learning frameworks for image classification provided valuable insights
into the strengths and limitations of Velox, PyTorch, and TensorFlow. The results demonstrated
that Velox, despite its installation challenges and lack of community support, offers high efficiency
and scalability in distributed settings. PyTorch, with its flexibility and robust community, was a
solid performer, though it lacked the speed of Velox. TensorFlow, known for its extensive
resources and strong community support, exhibited good performance but required more resources.
In conclusion, this project highlighted the complexities and challenges associated with working
with new and less-established machine learning frameworks. While Velox's efficiency and
scalability are promising, its steep learning curve and lack of community support can be significant
barriers. The experience gained through this project underscores the importance of comprehensive
documentation, community support, and a robust development environment when adopting new
technologies.

5.2 Future work

Future work for this project can focus on testing the frameworks with more complex datasets, such
as ImageNet, to gauge their performance under more demanding conditions. This will help assess
their scalability and robustness. Additionally, exploring advanced neural network architectures
could reveal whether they offer improved accuracy and generalization. Another crucial area is
enhancing integration with SQL and NoSQL databases, allowing smoother data ingestion for
streamlined machine learning pipelines. Finally, implementing monitoring tools for GPU and CPU
utilization in Velox can provide insights to optimize resource allocation and improve the efficiency
of distributed machine learning processes.

8



References

[1] Pedreira, P., Erling, O., Basmanova, M., Wilfong, K., Sakka, L., Pai, K., He, W., & Chattopadhyay, B.
(2022). Velox: meta's unified execution engine. Proceedings of the VLDB Endowment, 15(12),
3372–3384. https://doi.org/10.14778/3554821.3554829.

[2] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., … Chintala, S. (2019). PyTorch:
An imperative style, high-performance deep learning library. In Advances in neural information
processing systems (Vol. 32).

[3] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., … Zheng, X. (2016). TensorFlow: A
system for large-scale machine learning. In Proceedings of the 12th USENIX symposium on operating
systems design and implementation (OSDI 16) (pp. 265–283).t

[4] Krisilias, A., Provatas, N., Koziris, N., & Konstantinou, I. (2021, December). A Performance
Evaluation of Distributed Deep Learning Frameworks on CPU Clusters Using Image Classification
Workloads. In 2021 IEEE International Conference on Big Data (Big Data) (pp. 3085–3094). IEEE

9


