
Aditi Ganapathi

aganap12@asu.edu

1229975723

Vihang Pancholi

vpancho1@asu.edu

1229382416

ShubhMehta

smehta84@asu.edu

1230683898

Abstract

The combination of vector databases and Large Language Models (LLMs) is a major

development in the fields of information retrieval and natural language processing. In the

context of Retrieval-Augmented Generation (RAG) applications, this study examines the

cooperative dynamics of cutting-edge LLMs, such as Falcon 7B and Zephyr 7B Beta, and

premier vector databases, such as FAISS and ChromaDB. This paper outlines the critical

performance factors that impact RAG optimization by careful assessment and

comparative analysis, offering insights into the subtleties of retrieval efficiency impacted

by GPU memory allocations. The analysis of BGE and OpenAI embeddings highlights the

significance that embedding quality plays in RAG applications. This work advances our

knowledge of the complementary relationship between vector databases and LLMs and

their joint potential to improve information retrieval and natural language generation.

I. Introduction

There are several areas where Large Language Models (LLMs) remain unreliable even with their

tremendous potential. The problem of hallucinations, in which LLMs provide believable but

factually inaccurate or faithfully nonsensical information, is one of their main weaknesses. LLMs

lack domain expertise, to begin with. As a result of their primary training on public datasets,

LLMs are naturally constrained in their capacity to respond to domain-specific queries that fall

outside the purview of their internal expertise. Moreover, LLMs find it difficult to keep up with

real-time knowledge developments. Because the external environment is dynamic and always

changing, even if the queries are contained in the learning corpora of LLMs, their replies may still

show limitations due to internal information becoming old. Apart from that, LLMs are discovered

to contain bias with respect to the data that they have been trained on. Large datasets used for

LLM training could lead to systematic errors due to their inherent biases. Finally, due to the

observation that LLMs have a propensity to forget knowledge from prior inputs, the oblivion

problem has generated debate. According to research, LLMs display the same catastrophic

forgetting tendency as neural networks. From a cost standpoint, the low number of tokens

available to LLMs and the high expense of training and fine-tuning for each change in data have

been a limitation, particularly when dealing with customized or business-specific responses to

querying that demand real-time data updates.

Reliable data systems are necessary for the effective management and retrieval of unstructured

data, which is represented by generative models such as LLMs through vector data embeddings.

VeRA: VectorDB-based Retrieval Augmentation

mailto:aganap12@asu.edu
mailto:aganap12@asu.edu


Adapted specifically for AI, vector databases, or VecDBs, provide a dynamic solution that appears

to be distinct from LLMs by facilitating the smooth storing and retrieval of vector data at scale.

VecDB integration as external knowledge bases adds domain-specific data to LLMs and

guarantees scalability as data volumes grow. In dynamic, data-rich contexts, VecDBs' flexibility to

changing data enables RAG models and allows for real-time updates for precise and contextually

relevant answers. VecDBs improve knowledge retrieval for RAG models by utilizing

high-dimensional vector spaces and combining multimodal data to enable accurate responses

and optimized storage efficiency. VecDB-LLM combinations offer a promising technological

synergy, but the absence of standard evaluation frameworks encourages the creation of a

benchmark to assess and contrast different VecDB-RAG configurations, leading to progress in

this developing sector.

A. Vector Databases (VectorDBs)

The purpose of vector databases is to hold information as vector embeddings, in which each

dimension denotes a unique characteristic or feature that captures underlying relationships and

structure. By utilizing techniques like approximate nearest neighbor search, these databases are

designed to enable quick similarity searches and data retrieval. Beyond traditional

keyword-matching limitations, these frameworks enable users to explore and extract material

based on its semantic or contextual relevance.

B. Retrieval Augmented Generation (RAG)

RAG is a technique that leverages contextually relevant information acquired from a database or

knowledge source to enhance the generation process by combining information retrieval with

natural language generation. RAG makes it possible to incorporate external information to direct

the generation of clear and educational text by integrating retrieval processes into generative

models. The two primary parts of a RAG design are usually a retriever module and a generator

module. In response to the input prompt, the retriever module is in charge of contacting the

external knowledge source and obtaining relevant data. The generator module receives this

information when it has been retrieved and combines it with the input prompt to produce the

final output. RAG provides an advanced solution for a range of natural language processing

applications by efficiently utilizing external data to improve the quality and relevance of the

generated text by introducing a retrieval step prior to the creation process.

C. Large Language Models (LLMs)

Transformer architecture, which is composed of feedforward neural networks and numerous

layers of self-attention processes, serves as the foundation for large language models. Due to its

architecture, the transformer model may capture long-range dependencies in text data by

processing many segments of the input sequence at once. By adding more layers, hidden units,

and parameters, large language models scale up this transformer design, improving language

understanding and learning capacities. These models develop rich representations of language

that may be used to a variety of downstream natural language processing tasks by utilizing large

volumes of text data in an unsupervised way through the use of pre-training and fine-tuning

procedures.



II. Literature Review

A number of recent research examined techniques to improve LLMs through the integration of

different approaches. While EASE uses entities as indicators of text semantics (Nishikawa et al.,

2022), kNN-LMs use closest neighbor search to improve generalization (Khandelwal et al.,

2020). By adding grounding papers, in-context RALM shows performance improvement (Ram

et al., 2023), while SURGE improves dialogue creation by utilizing context-relevant subgraphs

(Kang and Kwak, 2023). Through knowledge graphs, RET-LLM provides write-read memory

units to LLMs (Modarressi et al., 2023). Effective utilization of both internal and external

knowledge is improved by SKR (Yu et al., 2023) and retrieval-augmented text production is

improved by Selfmem (Xin et al., 2023) by generating an unlimited memory pool.

In Naive RAG (Ma et al., 2023a), the top K sources that most closely resemble the query are

retrieved first in terms of priority. The enlarged contextual foundation for handling the user's

request is then derived from these chunks. In this technique, low precision in retrieval quality

might result in mismatched retrieved chunks and other problems like hallucinations or mid-air

drops. Low recall also makes it difficult to recover all pertinent pieces and impairs the LLMs'

capacity to formulate thorough responses (Gao et al., 2023).

By using techniques including improving data granularity, optimizing index structures, adding

metadata, alignment optimization, and mixed retrieval, it is possible to optimize data indexing

in RAG systems, which is essential for improving content quality (Li et al., 2023). This entails

updating out-of-date material, verifying accuracy, and standardizing wording. Enhancing

retrieval relevance through fine-tuning embedding models, such as BGE, is particularly

beneficial in domain-specific applications. Contextual understanding is captured by dynamic

embedding, as demonstrated by OpenAI's embeddings-ada-02 (Karpukhin et al., 2020).

Relevant content placement is given priority by reranking techniques like Diversity Ranker and

LostInTheMiddleRanker. Selective Context and Recomp are two prompt compression strategies

that reduce noise by emphasizing important paragraphs and compressing extraneous context

(Litman et al., 2020). When combined, these tactics seek to maximize RAG performance

through increased efficiency and accuracy in retrieval.

Integrating VecDBs with LLMs reduces data operational costs significantly (Sanca and Ailamaki,

2023). GPT-Cache (Bang, 2023) serves as a semantic cache, storing previous query responses to

minimize costly API calls and speed up response times. VecDBs enhance LLMs' information

retrieval by indexing vast Q&A data into a vector space, enabling precise semantic matching for

more accurate and timely responses (Sanca and Ailamaki, 2023).

III. Methodology

We explore and assess the usage of vector databases and LLMs in the context of RAG

applications in this section before delving into the complex methodological framework that

guides our study. Our methodology includes the methodical integration of various vector



databases and LLM settings, as well as the careful preprocessing of corpuses customized for

both text and image datasets. Through an explanation of the experimental setup, data collection,

preprocessing methods, model applications, and assessment strategies used in our work, we

hope to offer a thorough synopsis of the approaches that guide our research activities and propel

our quest to improve the effectiveness and practicality of RAG models. The workflow adopted

during the course of the project has been outlined below in Figure 1.

Figure 1: Project pipeline.

The process for some steps of the pipeline have been detailed in the upcoming subsections.

A. Data Preparation

During the research process, a comprehensive exploration of various combinations of vector

databases and LLMs was undertaken to ascertain the optimal configuration. Our study was

conducted using a diverse textual dataset comprising approximately 350 blog posts detailing

AWS products, sourced from Kaggle, in conjunction with CIFAR-10 for image-based analyses.

Moreover, the computational intensity of our endeavor necessitated substantial compute

resources, which were procured through the utilization of ASU Sol and Google Colab GPUs. It is

noteworthy that, primarily due to logistical constraints pertaining to hardware availability, the

computational workflows were executed on A30 GPUs, deviating from the preferred choice of

A100 GPUs typically recommended for such computational tasks.

B. Technical Setup

1. VectorDB Setup

The setup for RAG in our project involved a comprehensive evaluation of leading vector

databases, namely FAISS, ChromaDB, Weaviate, and Milvus, to determine their suitability for

integrating external knowledge sources within the RAG framework. There are different

similarity search algorithms available for data retrieval in each vector database. A proximity



graph called a Hierarchical Navigable Small World (HNSW) links two vertices according to how

close they are to one another. For quantization in FAISS, we employed IndexIVFFlat, or

Inverted File Index with Euclidean Distance, and IndexFlatL2, or Euclidean Distance. We

employed Cosine Similarity and Squared L2, or the Euclidean Distance, for ChromaDB. Faiss

gives us the ability to add steps that optimize our search in a variety of ways. By dividing the

index into Voronoi cells, we narrowed the search area and arrived at an approximation rather

than an exact result as would have come from an exhaustive search. In order to do this, we feed

the quantizer step, IndexFlatL2, into the index that partitions, IndexIVFFlat.

2. RAG Setup

We implemented Zephyr 7B Beta as our selected LLM for the RAG applications. A vital criterion

in our experimental design was the consideration of LLMs with a parameter count exceeding 7

billion, recognized as optimal for enhancing RAG performance and leveraging contextual

information retrieval capabilities. Figure 2 shows the final RAG setup achieved during our

project.

Figure 2: RAGmodel setup.

C. Evaluation

The RAGAS benchmark was implemented to synthetically generate a diverse test dataset to

evaluate our model and use LLM-assisted evaluation metrics designed to objectively measure

performance based on metrics like correctness, similarity, relevancy, precision, and recall.

IV. Results

In terms of latency and similarity search, Figures 3 (a) and 3 (b) describe the Number of Vectors

vs. Retrieval Speed for IndexFlatL2, i.e., Euclidean Distance, and a comparative performance

between IndexFlatL2 and IndexIVFFlat.



(a) (b)

Figure 3: A comparison of indexing methods with respect to time and number of vectors.

The Euclidean distance between each point in our query vector and the vectors loaded into the

index is calculated by IndexFlatL2. It is straightforward, extremely accurate, but slow. Because

we are doing an exhaustive search when utilizing the IndexFlatL2 index alone, it does not scale

well and is computationally expensive. Rather, we notice a substantially faster query time by

feeding the partitioned IndexIVFFlat index with IndexFlatL2 as a quantizer step. However, this

method yields an approximate answer instead of the exact answer.

In instances where the application of IndexIVFFlat for approximate search yields suboptimal

results, enhancing retrieval accuracy can be accomplished by expanding the search scope by

adjusting the nprobe value. The optimization of this parameter offers a mechanism to fine-tune

retrieval precision and enhance search accuracy. Retrieval speeds corresponding to various

nprobe values shown in Figure 4 below provides a comprehensive insight into this experiment.

The augmentation of the nprobe value to broaden the search scope correlates with a notable

escalation in search speed.

Figure 4: A comparison of nprobe values with respect to time and number of vectors.



The retrieval time showed a clear relationship with the GPU memory allocated for the current

activity. To assess how well FAISS and ChromaDB performed with different GPU memory

configurations—8GB, 16GB, 32GB, and 64GB—a comparative analysis was conducted. The

outcomes demonstrated a roughly ten-fold speed boost in text and image retrieval tasks,

highlighting FAISS's better performance over ChromaDB. The results for this experiment have

been outlined below in Table I.

Table I: Retrieval time with respect to GPU memory.

GPU

Memory

Retrieval Time (microseconds)

FAISS Text ChromaDB Text FAISS Image ChromaDB Image

8GB 117281.918 1231719.255 31308.658 34198.432

16GB 57867.774 2188049.555 32512.716 47393.215

32GB 11992.932 2017313.242 35702.714 38496.621

64GB 11309.397 3520852.327 31463.863 42491.409

The text retrieval process took longer than the image retrieval process in both databases, which

may be explained by the fact that the text dataset is bigger than the image dataset. Moreover, a

significant discovery was that ChromaDB demonstrated faster retrieval times when allocated

8GB of memory instead of 16GB. This can be hypothesized to occur due to more efficient

memory management with the smaller memory footprint, potential configuration issues with

the larger memory setup, or other system bottlenecks becoming more apparent when there's

more memory available.

The synthetic test set was automatically extracted from our AWS Case Studies Blog Posts dataset

and conforms to the format specified by the RAGAS framework. In our assessment, we

compared the effects of question and data embeddings on answer recall and precision for both

OpenAI and BGE embeddings when used with the Zephyr 7B Beta Large Language Model. This

has been shown below in Figure 5.

Figure 5: A comparison of embeddings with respect to context precision and recall.



On the RAGAS benchmark, BGE performed marginally better than the OpenAI embeddings.

Notably, the study's most time-consuming component turned out to be the embedding

procedure. Surprisingly, ChromaDB showed longer indexing times for documents than FAISS

did for the same embedding functions, highlighting differences in indexing performance

amongst vector databases.

V. Conclusion

The findings emphasized the importance of combining vector databases with LLMs in RAG

applications. A thorough analysis was carried out to determine the performance characteristics

that are essential for RAG optimization. Additionally, the effects of memory configuration on

retrieval efficiency were clarified by comparing FAISS and ChromaDB with different GPU

memory allocations; FAISS consistently outperformed ChromaDB in tasks involving text and

image retrieval. A comparison of OpenAI and BGE embeddings using the Zephyr 7B Beta LLM

in the RAGAS framework showed that BGE embeddings performed marginally better on the

RAGAS benchmark, highlighting the critical role that high-quality embeddings play in RAG

applications. This thorough investigation sheds light on the intricate interactions between vector

databases, embeddings, and LLMs that promote improved information retrieval.

VI. Challenges and Future Scope

This evaluation of the study was limited to FAISS and ChromaDB; Milvus and Weaviate were

not included because of implementation issues. PyMilvus can be taken into consideration as a

potential option when Milvus encounters operational issues while Dockerizing on Sol. Weaviate

also had trouble measuring latency accurately, which made it difficult to remove API call

overheads from the equation when evaluating actual system performance.

The three main initiatives that make up the strategic roadmap are what drive the research

forward. First, by integrating third-party libraries and custom functions with FAISS, it is

intended to improve similarity search capabilities. Secondly, there are plans to create a specific

benchmark to assess retrieval metrics in order to supplement current benchmarks that mostly

concentrate on measures linked to quality. Finally, it is planned to create an application that

would make VecDB-RAG accessible to a wider audience, encouraging more people to use the

system and providing input. All of the strategic initiatives work together to strengthen the

usefulness and robustness of the search and retrieval systems that are being studied.



References

Gao, Y., et al. (2023). Retrieval-augmented generation for large language models: A survey.

*arXiv preprint arXiv:2312.10997*.

Kang, M., & Kwak, J. M. (2023). Knowledge graph-augmented language models for

knowledge-grounded dialogue generation. *arXiv preprint arXiv:2305.18846*.

Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., Chen, D., & Yih, W. (2020).

Dense passage retrieval for open-domain question answering. *arXiv preprint

arXiv:2004.04906*.

Khandelwal, U., Omer, L., et al. (2020). Generalization through memorization: Nearest

neighbor language models.

Li, X., Liu, Z., Xiong, C., Yu, S., Gu, Y., Liu, Z., & Yu, G. (2023). Structure-aware language model

pretraining improves dense retrieval on structured data. *arXiv preprint arXiv:2305.19912*.

Litman, R., Anschel, O., Tsiper, S., Litman, R., Mazor, S., & Manmatha, R. (2020). Scatter:

Selective context attentional scene text recognizer. In *Proceedings of the IEEE/CVF conference

on computer vision and pattern recognition* (pp. 11962–11972).

Ma, X., Gong, Y., He, P., Zhao, H., & Duan, N. (2023). Query rewriting for retrieval-augmented

large language models. *arXiv preprint arXiv:2305.14283*.

Modarressi, A., Imani, A., et al. (2023). RET-LLM: Towards a general read-write memory for

large language models. *arXiv preprint arXiv:2305.14322*.

Nishikawa, S., Ri, R., et al. (2022). EASE: Entity-aware contrastive learning of sentence

embedding. In *NAACL* (pp. 3870–3885).

Ram, O., Levine, Y., et al. (2023). In-context retrieval-augmented language models. *TACL*, 11,

1316–1331.

Sanca, V., & Ailamaki, A. (2023). E-scan: Consuming contextual data with model plugins. In

*VLDBWorkshop*.

Xin, C., Di, L., et al. (2023). Lift yourself up: Retrieval-augmented text generation with self

memory. *arXiv preprint arXiv:2305.02437*.

Yu, W., Iter, D., et al. (2023). Generate rather than retrieve: Large language models are strong

context generators. *arXiv preprint arXiv:2209.10063*.


