
Project Technical Report

Course: Data Intensive Systems for Machine Learning (CSE 598) - Spring 2024

Team Number: 30
Team Name: Autobots
Project Title: Comparative analysis of Velox, PyTorch, and TensorFlow on ResNet

workload

Group Members:

S.N
o

Name ASU ID E-mail

1 Rutwik Krushna Chaudhari 1229479292 rchaud32@asu.edu

2 Pratik Rajesh Agrawal 1229664022 pagarw40@asu.edu

3 Ashish Ambadas Wale 1229324631 awale1@asu.edu



1.Problem

The investigation at hand revolves around a critical challenge in the realm of machine
learning: the daunting task of selecting the most suitable framework for a given project.
We're focusing our efforts on evaluating the performance of various frameworks using
ResNet, a widely recognized convolutional neural network architecture prominent in
computer vision tasks. The ubiquity of ResNet makes it an ideal benchmark, offering a
representative workload to gauge the effectiveness of different frameworks.

We aim to tackle the challenge of framework selection by honing in on key metrics such
as inference time and ease of use. We're particularly interested in exploring the
capabilities of Velox, a framework renowned for optimizing data-intensive operations
within a single host. This choice intrigues us because it holds the promise of significant
advantages, especially in scenarios where computational resources are limited or where
efficient hardware utilization is crucial.

Moreover, this investigation is not just about solving a current problem; it's about staying
ahead of the curve in the ever-evolving landscape of machine learning. Regular
evaluations are vital to keep pace with advancements and trends in the field, ensuring
that practitioners have access to the most effective tools and methodologies for their
projects. By conducting systematic comparisons of machine learning frameworks, we're
contributing to ongoing discussions on best practices in model deployment and
inference, thus addressing a pertinent challenge faced by professionals in the machine
learning community.

2.Literature review

The burgeoning success of Deep Learning (DL) models owes much to the confluence of
factors such as the availability of vast datasets, increasing computational resources,
and the accessibility of deep learning frameworks, notably TensorFlow and PyTorch.
These frameworks, while heavily optimized for NVIDIA GPUs, have sparked numerous
performance characterization studies primarily focused on GPU-based Deep Neural
Network (DNN) training.

In this context, Arpan Jain and authors present a paper investigating TensorFlow and
PyTorch's comparative performance in training DNNs on single-GPU setups. This study
aims to unravel the performance disparities between the two frameworks, offering
valuable guidance to end-users navigating framework selection. Through detailed



benchmarking experiments encompassing seven popular neural network architectures
spanning computer vision, speech recognition, and natural language processing (NLP),
the research delineates key factors influencing performance, thereby empowering users
to optimize model implementation for enhanced efficiency.

In a parallel endeavor, Hulin Dai and authors’ effort undertakes an in-depth performance
characterization of state-of-the-art DNNs across various CPU architectures and NVIDIA
GPUs. This study not only sheds light on the performance disparities between CPU and
GPU-based training but also explores the nuanced relationship between CPU/system
characteristics and DNN specifications. The findings highlight the efficacy of
multi-process (MP) training, even on single-node setups, over the single-process (SP)
approach, and underscore the intricate interplay between hardware configurations and
DNN architectures.

Furthermore, the comparative analysis between CPU and GPU-based training provides
valuable insights into the relative advantages and limitations of each approach,
facilitating informed decision-making for deep learning practitioners. Additionally, the
profiling analysis for Horovod offers practical guidance for harnessing distributed
computing paradigms effectively in deep learning workflows, thereby advancing the
efficiency and efficacy of DL applications.

3.Model

Due to Velox’s complexity, we describe our model as close to ResNet as possible. The
layered architecture is described below.

There are a total of 9 layers. The first 7 convolutional layers perform the 2D convolution
on the input image. The flattened layer is needed for TensorFlow before a final dense
layer with the number of nodes equal to the number of prediction classes.

The architecture is missing the residual connections and Batch normalization layers
from ResNet architecture.



4.Experiment Setup

The experimental setup for our study involved conducting model training and testing on
Google Cloud Platform (GCP) Compute instances, utilizing a specific configuration
tailored to our requirements. Here's a breakdown of the key components of the setup:

RAM: The virtual machine instances were provisioned with 32 GB of RAM. Sufficient
memory allocation is essential for handling large datasets and model parameters
effectively, ensuring smooth execution of training and inference tasks without running
into memory constraints.
Architecture: The architecture of the compute instances was x86_64, which is a
common architecture for modern processors and compatible with a wide range of
software and frameworks commonly used in machine learning tasks.
Operating System (OS): The compute instances were running on the Linux operating
system. Linux is a popular choice for machine learning tasks due to its stability,
performance, and extensive support for various tools and libraries commonly used in
the field.



CPUs: The instances were equipped with 8 CPUs, providing ample processing power
for training and inference tasks. Multi-core CPUs enable parallel processing, which can
significantly expedite the execution of machine learning algorithms, especially those that
can be parallelized effectively.

Cache Configuration: The CPUs featured different levels of cache memory to optimize
data access speeds. This included L1 cache with 128 KiB, L2 cache with 4 MiB, and L3
cache with 24.8 MiB. Cache memory plays a crucial role in reducing memory latency by
storing frequently accessed data closer to the CPU cores, thereby enhancing overall
system performance.
NUMA Node Configuration: The CPUs were organized into a NUMA (Non-Uniform
Memory Access) node configuration labeled as "NUMA node0 0-7". NUMA architecture
is designed to optimize memory access in multi-socket systems by dividing memory into
distinct nodes, each associated with a subset of CPUs. This configuration ensures
efficient memory access and minimizes latency by prioritizing access to local memory
within each NUMA node.

Overall, this setup provided a robust and well-configured environment for conducting
our experiments, allowing us to assess the performance of machine learning models
under controlled conditions with ample computational resources.

5.Dataset

The dataset under scrutiny comprises 60,000 images, each sized 32x32 pixels, and
containing color information. These images are categorized into 10 distinct classes, with
each class housing 6,000 images. The classes include Airplane, Automobile, Bird, Cat,
Deer, Dog, Frog, Horse, Ship, and Truck. This structured organization ensures a
balanced representation across different categories, facilitating robust training and
evaluation of machine learning models.



In terms of data partitioning, the dataset is split into a training set and a test set. The
training set consists of 50,000 images, while the test set comprises 10,000 images. This
division ensures that models are trained on a substantial portion of the data while still
leaving a separate subset for unbiased evaluation of their performance. Each image in
the dataset is associated with a single label representing its class, allowing for
supervised learning approaches to be employed.

For the C++ dataset, the data is serialized in a specific format where the first byte
denotes one of the 10 target labels corresponding to the image's class. Following this
byte, the next 3,072 bytes contain the pixel values of the image. This format enables
efficient storage and processing of the dataset, facilitating seamless integration into
C++-based machine learning pipelines and applications.

6.Evaluation Results
The comparison of execution times for Velox, Pytorch, and TensorFlow provides
valuable insights into the performance of these frameworks across varying sample
sizes, with time as a primary metric. Velox consistently outperforms both Pytorch and
TensorFlow across all sample sizes, showcasing its efficiency in handling larger
datasets. The metrics reveal that as the number of samples increases, all three
frameworks experience a rise in execution times, reflecting increased computational
demands. However, Velox maintains notably lower execution times compared to its
counterparts, indicating its prowess in swift data processing. Pytorch follows with
moderately higher execution times, while TensorFlow exhibits the longest execution
times, especially evident with larger sample sizes. These findings underscore Velox's



competitive edge in terms of time efficiency, making it a compelling option for tasks
demanding fast data processing compared to established frameworks like Pytorch and
TensorFlow.

7.Conclusion and Future Work

In conclusion, our study has shed light on the performance of machine learning
frameworks, particularly in the context of ResNet workload evaluation on VeloxML.
Through our experiments, we have demonstrated the potential of VeloxML in optimizing
data-intensive operations within a single host, showcasing its competitive edge in
inference time and overall efficiency. Additionally, our findings underscore the
importance of systematic evaluations in guiding practitioners toward selecting the most
suitable framework for their specific project requirements.

Moving forward, several avenues for future work emerge, including implementing
Residual Block Logic directly within VeloxML to further enhance its capabilities and
efficiency in handling complex neural network architectures. Moreover, simplifying the
Velox API to improve user experience and extending its functionality to encompass a



broader range of machine learning functions will be pivotal steps towards fostering its
adoption and usability among practitioners. Additionally, experimenting with more
hyperparameters such as model size, number of execution threads, data splits, etc. will
help in understanding how Velox performs in comparison with other popular Machine
Learning frameworks. Lastly, conducting comparison studies with different hardware
setups will provide valuable insights into the scalability and adaptability of VeloxML
across diverse computational environments, thereby contributing to its continued
refinement and evolution in the ever-expanding landscape of machine learning
frameworks.

8.References
[1] Pedreira, Pedro, et al. "Velox: meta's unified execution engine." Proceedings of the
VLDB Endowment 15.12 (2022): 3372-3384.

[2] Paszke, Adam, et al. "Pytorch: An imperative style, high-performance deep learning
library." Advances in neural information processing systems 32 (2019).

[3] Abadi, Martín, et al. "{TensorFlow}: a system for {Large-Scale} machine learning."
12th USENIX symposium on operating systems design and implementation (OSDI 16).
2016.

[4] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016.

[5] Jain, Arpan, et al. "Performance characterization of dnn training using tensorflow and
pytorch on modern clusters." 2019 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2019.

[6] Dai, Hulin, et al. "Reveal training performance mystery between TensorFlow and
PyTorch in the single GPU environment." Science China Information Sciences 65
(2022): 1-17.


