
Comparison of Deep -Q Network for Reinforcement Learning us-
ing Multi-stage Frameworks

Yongju Seong
 Arizona State University

 Tempe, Arizona
 1225467737

yseong3@asu.edu

Tzu Ning Chueh
 Arizona State University

 Tempe, Arizona
 1225456934

tchueh@asu.edu

Aniket Anil Bhosale
Arizona State University

 Tempe, Arizona
 1225396211

abhosal4@asu.edu

PROBLEM STATEMENT
The problem we investigate is the impact of computational in-
frastructure, particularly the utilization of deep learning frame-
works with different execution modes (eager and lazy) and dis-
tributed training capabilities, on the performance of Deep Q Net-
works (DQN) within multi-stage reinforcement learning frame-
works. While DQN has shown considerable success in various
reinforcement learning applications, understanding how different
deep learning platforms, such as TensorFlow, Apache MXNet, and
Google Jax, along with their execution modes and distributed
training systems, influence the efficiency and effectiveness of
DQN remains an open question. This research is significant as it
aims to provide comprehensive insights into the relative strengths,
weaknesses, and trade-offs of these frameworks, aiding in the
selection of the most suitable platform for reinforcement learning
applications. Through systematic experimentation and analysis,
we seek to contribute to a deeper understanding of the role played
by computational infrastructure in shaping the performance of
DQN within multi-stage frameworks.

READING AND BACKGROUND
This research leverages the significant developments in rein-
forcement learning, particularly the Deep Q-Network (DQN)
model, which has demonstrated notable successes across various
applications. The study focuses on comparing the performance
implications of using different computational frameworks—Ten-
sorFlow, Apache MXNet, and Google Jax—on DQN implementa-
tion. The literature supports the relevance of these frameworks in
enhancing computational efficiency and scalability in machine
learning tasks. References such as Caldas et al. (2018) emphasize
the importance of computational efficiency in expanding the reach
of federated learning, which aligns with the objectives of this
study to optimize resource utilization and training efficiency
across different frameworks.

Sebastian Caldas et al.'s work provides a foundational understand-
ing of reducing resource requirements in machine learning, which
is crucial for evaluating the frameworks chosen for this study.
Additionally, framework-specific resources such as "Google JAX"

documentation and TensorFlow's reinforcement learning capabili-
ties via TensorFlow Agents (Hafner et al., 2017) provide essential
technical insights that help in understanding the operational and
architectural distinctions among the frameworks. This compara-
tive analysis aims to identify which framework delivers optimal
performance in terms of speed, efficiency, and scalability when
running DQN models, guiding future applications in more com-
plex scenarios such as Atari games or real-world tasks requiring
robust decision-making models.

METHOD
We investigate the most popular frameworks in machine learning
and compare them across different tasks using different execution
modes and varied computation resources. Our aim is to identify
which of these networks is the most scalable/efficient and find out
what tasks each framework is best suited for.

EXPERIMENTAL ENVIRONMENTS
The experimental setup involves comparing the performance of
three deep learning frameworks, TensorFlow, Apache MXNet, and
Google Jax, in training Deep Q Networks (DQN) within the Cart-
Pole environment. The experiments are conducted on ASU's su-
percomputing infrastructure, Sol, which comprises over 15,000
CPU cores, including 240 A100 and 15 A30 GPUs, as well as
high-memory nodes with 2TB of RAM each. The comparison is
carried out across three architectures: single CPU core allocation,
single GPU allocation (A100), and dual GPU allocation (2 *
A100), all performed on a single node. The evaluation metrics
include training time, episode length, resource utilization, and
scalability. The evaluation is conducted for both lazy and eager
execution modes on CPU, GPU, and Horovod (for distributed
training with 2 GPUs). For each framework and execution mode,
the final score achieved, resource utilization, and training times
are compared across different tasks and execution styles to assess
their performance comprehensively.

DATA
Q-Learning algorithm is a reinforcement learning algorithm that
doesn’t rely on external data. We used the OpenAI gym environ-

ment to set up a training system. OpenAI Gym is a toolkit for
reinforcement learning (RL) that provides a range of environ-
ments for training RL agents. Users select an environment, like a
game or simulation, and their agent interacts with it, learning to
make decisions that maximize rewards. The process involves
running episodes, balancing exploration and exploitation, and
integrating various RL algorithms. Gym enables fair comparisons
between algorithms and allows for customization of environ-
ments. Overall, it's a foundational tool for RL research and devel-
opment, offering standardized interfaces and evaluation protocols.

We use this framework with the Cartpole-V1 environment. Our
goal is to hit 1000 consecutive steps in this environment. A model
that can achieve this score has essentially learned the mechanics
of the game and can go on for longer if desired.

The cartpole environment gives out information about the heading
and angular velocity of the pole and the coordinates of the cart.
This is used as the data per step and the model learns using subse-
quent steps.

RESULTS
In our evaluation, we present the results of our evaluation across
six tasks/execution styles for each framework:

1. Lazy execution on CPU

2. Lazy execution on GPU

3. Lazy execution on Horovod

4. Eager execution on CPU

5. Eager execution on GPU

6. Eager execution on Horovod

We initially assessed the final score attained by each framework
across these tasks to determine the effectiveness of the learned
policy. Subsequently, we examined resource utilization to evaluate
the performance of each framework within a specific task, consid-
ering CPU, GPU, and Horovod execution. Finally, we analyzed
the training times associated with each task to gauge the perfor-
mance of each framework in terms of training speed and efficien-
cy. Here are the results per each framework below.

As we can see in Figure 1, each task with Jax got the goal score
(1000) except for one task (eager execution on CPU). When using
JAX with eager execution on CPU, it runs too slow and fails to
even give an output.

Also, The CPU showed the highest utilization during lazy execu-
tion on CPU, followed closely by eager execution on GPU. The
lowest utilization was observed during lazy execution with
Horovod. RAM utilization was highest during lazy execution on
CPU and lowest during lazy execution with Horovod. GPU uti-
lization was highest during lazy execution with Horovod and low-
est during eager execution with Horovod. Additionally, GPU
memory utilization and the utilization of the second GPU were
both 0%.

Lastly, the highest training time was observed for eager execution
with GPU, while the lowest was observed for lazy execution with
GPU.

Figure 1: Final score attained by Jax

Figure 2: Average resource utilization by Jax

Figure 3: Training times by Jax

Figure 4: Final score attained by TensorFlow

Similarly, as we can see in Figure 4, models trained using lazy
execution with TensorFlow did not achieve our goal score (1000),
while those trained using eager execution did.

Moreover, the CPU utilization performance of the eager execution
with CPU is the highest, while the Horovod with eager and GPU
execution shows the lowest performance. The RAM utilization
performance of the eager execution with CPU is the highest, while
the eager execution with GPU shows the lowest performance.

Lastly, the eager execution with GPU shows the longest training
time, and Horovod with lazy execution shows the shortest training
time as we can see in Figure 6.

For MXNet, Lazy execution consistently achieves the highest
performance, with all tasks reaching a final score of 1000.

Also, the CPU utilization performance is highest for eager execu-
tion with CPU, while both lazy and eager execution with GPU
shows the lowest performance in terms of CPU utilization. Simi-
larly, the RAM utilization performance is highest for lazy execu-
tion on the CPU, while both lazy and eager execution with GPU
shows the lowest RAM utilization.

Lastly, the eager execution on CPU had the highest training time,
while eager execution with Horovod had the lowest as we can see
in Figure 9.

In sum, the result reveals that achieving optimal performance
requires tasks that fully utilize GPU resources, indicating a need
for more compute-intensive tasks. Across all frameworks, lazy
execution consistently outperforms eager execution in terms of
training time. Moreover, when utilizing GPU resources, there is a
notable improvement in performance regarding RAM and memo-
ry utilization, regardless of the chosen execution method for the
task. This suggests that leveraging GPU resources enhances effi-
ciency and resource management, irrespective of the execution
paradigm adopted.

Also, here are the results to compare for all tasks and frameworks
below.

Figure 5: Average resource utilization by TensorFlow

Figure 6: Training times by TensorFlow

Figure 7: Final score attained by MXNet

Figure 8: Average resource utilization by MXNet

Figure 9: Training times by MXNet

In conclusion, when comparing TensorFlow, JAX, and MXNet for
deep learning tasks, each framework presents its own trade-offs in
terms of resource utilization and training efficiency.

TensorFlow, while known for its widespread adoption and user-
friendly interface, tends to utilize resources less efficiently com-
pared to other frameworks. This inefficiency can result in longer
training times. However, TensorFlow boasts extensive documenta-
tion and strong developer support, making it an attractive option
for those prioritizing ease of use and accessibility.

On the other hand, JAX demonstrates lower RAM utilization,
which is beneficial in scenarios where memory is limited. Howev-
er, this advantage comes at the cost of longer training times com-
pared to TensorFlow. Therefore, JAX may be recommended in
situations where memory constraints are a primary concern and
where users are willing to accept slightly longer training times for
the sake of memory efficiency.

MXNet stands out for its efficient utilization of resources (CPU),
resulting in shorter training times compared to TensorFlow and
JAX. This makes MXNet a compelling choice for users who pri-
oritize training speed and computational efficiency. While MXNet
may not offer the same level of user-friendliness as TensorFlow,
its high efficiency makes it particularly appealing for large-scale
deep learning tasks where computational resources are a signifi-
cant factor.

In summary, TensorFlow excels in ease of use and developer sup-
port but may require more resources and time for training. JAX is
recommended for memory-constrained environments despite
longer training times. Meanwhile, MXNet shines in terms of re-
source efficiency and faster training, making it ideal for computa-
tionally intensive tasks. Ultimately, the choice between these
frameworks depends on the specific requirements and priorities of
the user or project at hand.

CONCLUSION
In conclusion, the study presents a detailed comparison of the
performance of three major computational frameworks in execut-
ing DQN on the CartPole task. The findings suggest that MXNet
generally offers the best performance in terms of training time and
resource utilization, making it the most efficient framework
among those tested. TensorFlow, while not as efficient, is noted
for its ease of use and extensive documentation which might be
beneficial for developers new to reinforcement learning. JAX,
although it showed higher training times, could be preferable in
scenarios with limited memory availability.

FUTURE WORKS
For future work, the team suggests exploring two promising direc-
tions: Firstly, expanding the evaluation of framework performance
through the implementation of more complex tasks, such as Atari
games. This extension would allow for a comparative analysis of
the learning speed and sample efficiency of DQN models across
different computational frameworks under more challenging con-
ditions, thus providing a clearer understanding of each frame-
work's robustness and efficiency. Secondly, investigating ensem-
ble learning techniques to boost DQN performance offers another

Figure 10: GPU utilization for all tasks and frame-
works

Figure 11: Training times for all tasks and frameworks

Figure 12: RAM utilization for all tasks and frame-
works

Figure 13: CPU utilization for all tasks and frame-
works

valuable avenue. Training multiple DQN models with variations
in their architecture or training datasets and then combining their
outputs could potentially enhance model robustness and general-
ization capabilities, thereby fostering more reliable and effective
reinforcement learning applications.

REFERENCES
[1] Jia Zou, 2024. CSE 598: Data Intensive System for Machine Learning. Lecture

Slides
[2] Caldas, Sebastian, et al, 2018. Expanding the reach of federated learning by

reducing client resource requirements. arXiv preprint arXiv:1812.07210. DOI:
https://doi.org/10.48550/arXiv.1812.07210

[3] Hafner, Danijar, James Davidson, and Vincent Vanhoucke, 2017. Tensorflow
agents: Efficient batched reinforcement learning in tensorflow. arXiv preprint
arXiv:1709.02878. DOI: https://doi.org/10.48550/arXiv.1709.02878

[4] Google JAX. 2024. Google Jax Documentation. Retrieved April 27, 2024
from:https://jax.readthedocs.io/

[5] TensorFlow. 2024. TensorFlow Documentation. Retrieved April 27, 2024 from
https://www.tensorflow.org/

[6] Apache MXNet. 2024. Apache MXNet Documentation. Retrieved April 27,
2024 from https://mxnet.apache.org/

[7] OpenAI Gym. 2024. OpenAI Gym Documentation. Retrieved April 27, 2024
from https://www.gymlibrary.dev/index.html

https://doi.org/10.48550/arXiv.1709.02878
https://jax.readthedocs.io/
https://mxnet.apache.org/
https://www.gymlibrary.dev/index.html

