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PROBLEM STATEMENT 
The problem we investigate is the impact of computational in-
frastructure, particularly the utilization of deep learning frame-
works with different execution modes (eager and lazy) and dis-
tributed training capabilities, on the performance of Deep Q Net-
works (DQN) within multi-stage reinforcement learning frame-
works. While DQN has shown considerable success in various 
reinforcement learning applications, understanding how different 
deep learning platforms, such as TensorFlow, Apache MXNet, and 
Google Jax, along with their execution modes and distributed 
training systems, influence the efficiency and effectiveness of 
DQN remains an open question. This research is significant as it 
aims to provide comprehensive insights into the relative strengths, 
weaknesses, and trade-offs of these frameworks, aiding in the 
selection of the most suitable platform for reinforcement learning 
applications. Through systematic experimentation and analysis, 
we seek to contribute to a deeper understanding of the role played 
by computational infrastructure in shaping the performance of 
DQN within multi-stage frameworks. 

READING AND BACKGROUND 
This research leverages the significant developments in rein-
forcement learning, particularly the Deep Q-Network (DQN) 
model, which has demonstrated notable successes across various 
applications. The study focuses on comparing the performance 
implications of using different computational frameworks—Ten-
sorFlow, Apache MXNet, and Google Jax—on DQN implementa-
tion. The literature supports the relevance of these frameworks in 
enhancing computational efficiency and scalability in machine 
learning tasks. References such as Caldas et al. (2018) emphasize 
the importance of computational efficiency in expanding the reach 
of federated learning, which aligns with the objectives of this 
study to optimize resource utilization and training efficiency 
across different frameworks. 

Sebastian Caldas et al.'s work provides a foundational understand-
ing of reducing resource requirements in machine learning, which 
is crucial for evaluating the frameworks chosen for this study. 
Additionally, framework-specific resources such as "Google JAX" 

documentation and TensorFlow's reinforcement learning capabili-
ties via TensorFlow Agents (Hafner et al., 2017) provide essential 
technical insights that help in understanding the operational and 
architectural distinctions among the frameworks. This compara-
tive analysis aims to identify which framework delivers optimal 
performance in terms of speed, efficiency, and scalability when 
running DQN models, guiding future applications in more com-
plex scenarios such as Atari games or real-world tasks requiring 
robust decision-making models. 

METHOD 
We investigate the most popular frameworks in machine learning 
and compare them across different tasks using different execution 
modes and varied computation resources. Our aim is to identify 
which of these networks is the most scalable/efficient and find out 
what tasks each framework is best suited for. 

EXPERIMENTAL ENVIRONMENTS 
The experimental setup involves comparing the performance of 
three deep learning frameworks, TensorFlow, Apache MXNet, and 
Google Jax, in training Deep Q Networks (DQN) within the Cart-
Pole environment. The experiments are conducted on ASU's su-
percomputing infrastructure, Sol, which comprises over 15,000 
CPU cores, including 240 A100 and 15 A30 GPUs, as well as 
high-memory nodes with 2TB of RAM each. The comparison is 
carried out across three architectures: single CPU core allocation, 
single GPU allocation (A100), and dual GPU allocation (2 * 
A100), all performed on a single node. The evaluation metrics 
include training time, episode length, resource utilization, and 
scalability. The evaluation is conducted for both lazy and eager 
execution modes on CPU, GPU, and Horovod (for distributed 
training with 2 GPUs). For each framework and execution mode, 
the final score achieved, resource utilization, and training times 
are compared across different tasks and execution styles to assess 
their performance comprehensively. 

DATA 
Q-Learning algorithm is a reinforcement learning algorithm that 
doesn’t rely on external data. We used the OpenAI gym environ-



ment to set up a training system. OpenAI Gym is a toolkit for 
reinforcement learning (RL) that provides a range of environ-
ments for training RL agents. Users select an environment, like a 
game or simulation, and their agent interacts with it, learning to 
make decisions that maximize rewards. The process involves 
running episodes, balancing exploration and exploitation, and 
integrating various RL algorithms. Gym enables fair comparisons 
between algorithms and allows for customization of environ-
ments. Overall, it's a foundational tool for RL research and devel-
opment, offering standardized interfaces and evaluation protocols.  

We use this framework with the Cartpole-V1 environment. Our 
goal is to hit 1000 consecutive steps in this environment. A model 
that can achieve this score has essentially learned the mechanics 
of the game and can go on for longer if desired.  

The cartpole environment gives out information about the heading 
and angular velocity of the pole and the coordinates of the cart. 
This is used as the data per step and the model learns using subse-
quent steps. 

RESULTS 
In our evaluation, we present the results of our evaluation across 
six tasks/execution styles for each framework: 

1. Lazy execution on CPU

2. Lazy execution on GPU

3. Lazy execution on Horovod

4. Eager execution on CPU

5. Eager execution on GPU

6. Eager execution on Horovod 

We initially assessed the final score attained by each framework 
across these tasks to determine the effectiveness of the learned 
policy. Subsequently, we examined resource utilization to evaluate 
the performance of each framework within a specific task, consid-
ering CPU, GPU, and Horovod execution. Finally, we analyzed 
the training times associated with each task to gauge the perfor-
mance of each framework in terms of training speed and efficien-
cy. Here are the results per each framework below.

 

As we can see in Figure 1, each task with Jax got the goal score 
(1000) except for one task (eager execution on CPU). When using 
JAX with eager execution on CPU, it runs too slow and fails to 
even give an output.   

Also, The CPU showed the highest utilization during lazy execu-
tion on CPU, followed closely by eager execution on GPU. The 
lowest utilization was observed during lazy execution with 
Horovod. RAM utilization was highest during lazy execution on 
CPU and lowest during lazy execution with Horovod. GPU uti-
lization was highest during lazy execution with Horovod and low-
est during eager execution with Horovod. Additionally, GPU 
memory utilization and the utilization of the second GPU were 
both 0%. 

Lastly, the highest training time was observed for eager execution 
with GPU, while the lowest was observed for lazy execution with 
GPU. 

Figure 1: Final score attained by Jax

Figure 2: Average resource utilization by Jax

Figure 3: Training times by Jax

Figure 4: Final score attained by TensorFlow



Similarly, as we can see in Figure 4, models trained using lazy 
execution with TensorFlow did not achieve our goal score (1000), 
while those trained using eager execution did.  

Moreover, the CPU utilization performance of the eager execution 
with CPU is the highest, while the Horovod with eager and GPU 
execution shows the lowest performance. The RAM utilization 
performance of the eager execution with CPU is the highest, while 
the eager execution with GPU shows the lowest performance.  

Lastly, the eager execution with GPU shows the longest training 
time, and Horovod with lazy execution shows the shortest training 
time as we can see in Figure 6.

For MXNet, Lazy execution consistently achieves the highest 
performance, with all tasks reaching a final score of 1000.  

Also, the CPU utilization performance is highest for eager execu-
tion with CPU, while both lazy and eager execution with GPU 
shows the lowest performance in terms of CPU utilization. Simi-
larly, the RAM utilization performance is highest for lazy execu-
tion on the CPU, while both lazy and eager execution with GPU 
shows the lowest RAM utilization.  

Lastly, the eager execution on CPU had the highest training time, 
while eager execution with Horovod had the lowest as we can see 
in Figure 9.  

In sum, the result reveals that achieving optimal performance 
requires tasks that fully utilize GPU resources, indicating a need 
for more compute-intensive tasks. Across all frameworks, lazy 
execution consistently outperforms eager execution in terms of 
training time. Moreover, when utilizing GPU resources, there is a 
notable improvement in performance regarding RAM and memo-
ry utilization, regardless of the chosen execution method for the 
task. This suggests that leveraging GPU resources enhances effi-
ciency and resource management, irrespective of the execution 
paradigm adopted.  

Also, here are the results to compare for all tasks and frameworks 
below. 

Figure 5: Average resource utilization by TensorFlow

Figure 6: Training times by TensorFlow

Figure 7: Final score attained by MXNet

Figure 8: Average resource utilization by MXNet

Figure 9: Training times by MXNet



In conclusion, when comparing TensorFlow, JAX, and MXNet for 
deep learning tasks, each framework presents its own trade-offs in 
terms of resource utilization and training efficiency.  

TensorFlow, while known for its widespread adoption and user-
friendly interface, tends to utilize resources less efficiently com-
pared to other frameworks. This inefficiency can result in longer 
training times. However, TensorFlow boasts extensive documenta-
tion and strong developer support, making it an attractive option 
for those prioritizing ease of use and accessibility. 

On the other hand, JAX demonstrates lower RAM utilization, 
which is beneficial in scenarios where memory is limited. Howev-
er, this advantage comes at the cost of longer training times com-
pared to TensorFlow. Therefore, JAX may be recommended in 
situations where memory constraints are a primary concern and 
where users are willing to accept slightly longer training times for 
the sake of memory efficiency. 

MXNet stands out for its efficient utilization of resources (CPU), 
resulting in shorter training times compared to TensorFlow and 
JAX. This makes MXNet a compelling choice for users who pri-
oritize training speed and computational efficiency. While MXNet 
may not offer the same level of user-friendliness as TensorFlow, 
its high efficiency makes it particularly appealing for large-scale 
deep learning tasks where computational resources are a signifi-
cant factor. 

In summary, TensorFlow excels in ease of use and developer sup-
port but may require more resources and time for training. JAX is 
recommended for memory-constrained environments despite 
longer training times. Meanwhile, MXNet shines in terms of re-
source efficiency and faster training, making it ideal for computa-
tionally intensive tasks. Ultimately, the choice between these 
frameworks depends on the specific requirements and priorities of 
the user or project at hand. 

CONCLUSION 
In conclusion, the study presents a detailed comparison of the 
performance of three major computational frameworks in execut-
ing DQN on the CartPole task. The findings suggest that MXNet 
generally offers the best performance in terms of training time and 
resource utilization, making it the most efficient framework 
among those tested. TensorFlow, while not as efficient, is noted 
for its ease of use and extensive documentation which might be 
beneficial for developers new to reinforcement learning. JAX, 
although it showed higher training times, could be preferable in 
scenarios with limited memory availability.  

FUTURE WORKS 
For future work, the team suggests exploring two promising direc-
tions: Firstly, expanding the evaluation of framework performance 
through the implementation of more complex tasks, such as Atari 
games. This extension would allow for a comparative analysis of 
the learning speed and sample efficiency of DQN models across 
different computational frameworks under more challenging con-
ditions, thus providing a clearer understanding of each frame-
work's robustness and efficiency. Secondly, investigating ensem-
ble learning techniques to boost DQN performance offers another 

Figure 10: GPU utilization for all tasks and frame-
works

Figure 11: Training times for all tasks and frameworks

Figure 12: RAM utilization for all tasks and frame-
works

Figure 13: CPU utilization for all tasks and frame-
works



valuable avenue. Training multiple DQN models with variations 
in their architecture or training datasets and then combining their 
outputs could potentially enhance model robustness and general-
ization capabilities, thereby fostering more reliable and effective 
reinforcement learning applications. 

REFERENCES 
[1] Jia Zou, 2024. CSE 598: Data Intensive System for Machine Learning. Lecture 

Slides 
[2]  Caldas, Sebastian, et al, 2018. Expanding the reach of federated learning by 

reducing client resource requirements. arXiv preprint arXiv:1812.07210. DOI: 
https://doi.org/10.48550/arXiv.1812.07210 

[3] Hafner, Danijar, James Davidson, and Vincent Vanhoucke, 2017. Tensorflow 
agents: Efficient batched reinforcement learning in tensorflow. arXiv preprint 
arXiv:1709.02878. DOI: https://doi.org/10.48550/arXiv.1709.02878 

[4] Google JAX. 2024. Google Jax Documentation. Retrieved April 27, 2024 
from:https://jax.readthedocs.io/ 

[5] TensorFlow. 2024. TensorFlow Documentation. Retrieved April 27, 2024 from 
https://www.tensorflow.org/ 

[6] Apache MXNet. 2024. Apache MXNet Documentation. Retrieved April 27, 
2024 from https://mxnet.apache.org/ 

[7] OpenAI Gym. 2024. OpenAI Gym Documentation. Retrieved April 27, 2024 
from https://www.gymlibrary.dev/index.html

https://doi.org/10.48550/arXiv.1709.02878
https://jax.readthedocs.io/
https://mxnet.apache.org/
https://www.gymlibrary.dev/index.html

