
Benchmarking Large Language Model Inference

Narain Pattabhiraman
email: npattab1@asu.edu

Satwik Ponnam
email: sponnam@asu.edu

Harish Karthik Kumaran Pillai
email: hkumaran@asu.edu

Abstract

The landscape for training deep learning models (LLMs)
has grown markedly intricate and demanding, owing to
the rapid expansion in both size and complexity of these
models. The substantial computational requirements nec-
essary for processing extensive datasets have emerged as a
formidable challenge in the realm of large language mod-
els. Our project was driven by a keen interest in addressing
this challenge through the integration of parallel computing
techniques into our deep learning methodologies. Within
this report, we embark on a comprehensive exploration of
our approach, beginning with a thorough analysis of the un-
derlying issue, followed by the formulation and implemen-
tation of a potential solution. We then proceed to evaluate
the efficacy of our solution, while also identifying areas for
potential enhancements and future research endeavors.

1. Literature Survey
1.1. Model parallel

Figure 1. Computation flow of model parallelism across multiple
GPU’s

Model parallelism addresses scenarios where model
weights exceed the capacity of a single node by distributing
computation and parameters across multiple machines. Un-
like data parallelism, which replicates the full model across
workers, model parallelism assigns only a portion of the
parameters to each worker, reducing both memory use and
computational load.

Deep neural networks, typically composed of vertical
layers, appear ideally suited for partitioning by layers,

where a small set of consecutive layers is assigned to a sin-
gle worker. However, a simplistic approach of processing
data batches sequentially through these workers can lead to
significant idle times and poor utilization of computational
resources.

Figure 2. Computation heat map across devices

The model parallel approach, though effective in dis-
tributing work, tends to be slower due to the sequential pro-
cessing of layers, which leads to underutilization of avail-
able computational units, as only one is active at any given
time.

1.2. Pipeline parallelism

Pipeline parallelism combines data and model paral-
lelism to reduce downtime between model computations.
It does this by dividing a single minibatch into several mi-
crobatches, enabling each stage worker to process one mi-
crobatch at a time, which includes both a forward and back-
ward pass. Communication between workers involves only
the exchange of gradients and activations.

Different strategies are employed for scheduling tasks
and aggregating gradients in pipeline parallelism, with the
setup commonly referred to as pipeline depth. In the GPipe
framework, gradients from several microbatches are com-
bined and applied simultaneously, ensuring consistent and
efficient learning across various workforce sizes. This
method helps to significantly reduce idle time, known as
”bubbles,” especially when the number of microbatches is
much greater than the number of partitions.

1

mailto:npattab1@asu.edu
mailto:satwik.ponnam@asu.edu
mailto:hkumaran@asu.edu


Figure 3. Computation heatmap of pipeline parallelism model

1.3. GPipe

The GPipe’s throughput generally scales linearly with
the addition of devices, although an uneven distribution of
model parameters across workers can prevent this.

In PipeDream’s approach, each worker alternates be-
tween the forward and backward passes of a model, re-
ferred to as ”1F1B”. Each part of the model is considered
a ”stage,” and to enable data parallelism, each stage may
include several replicas.

Workers manage different model versions to ensure that
the same version is used for both passes of a minibatch.
PipeDream also allows an optional ”vertical sync” where
the model weights are synchronized across stages along
with activations and gradients, maintaining version consis-
tency in an asynchronous manner, unlike GPipe.

1.4. Deep speed Zero

The substantial computational needs of large model in-
ference require accelerators like GPUs to perform effi-
ciently. A critical consideration for managing a limited
GPU budget is the effective distribution of GPU memory
across model weights, inference inputs, and intermediate
results.

ZeRO-Inference adopts a strategy where it keeps all
model weights on the CPU or NVMe, depending on which
can hold the entire model. It then streams these weights

into the GPU one layer at a time for inference processing.
After each layer is computed, its outputs are saved in GPU
memory for use in the next layer, while the memory used
for the layer weights is freed up for the upcoming layer.
This approach results in inference times that include both
the computation time on the GPU and the time needed to
transfer layers over PCIe.

Initially, PipeDream profiles each model layer to deter-
mine computation time and memory needs. It then uses dy-
namic programming to find the optimal way to partition the
model into stages.

2. Method
In this study, we implemented model parallelism and

tensor parallelism on a plain PyTorch framework, due to
challenges experienced with frameworks such as Hugging
Face. Specifically, our implementation of tensor paral-
lelism, which involved partitioning weights according to at-
tention head dimensions, yielded higher performance met-
rics in terms of tokens per second.

Our experiments were conducted on a single node
equipped with up to four A100 GPUs within the SOL GPU
cluster. The focus was on achieving an asynchronous in-
ferencing mechanism akin to the PipeDream architecture,
which required a specialized scheduler for effective weight
management on the GPUs.

For inferencing, a batch size of four was utilized, and
prompts were sourced from the Alpaca dataset. The find-
ings from this study suggest that strategic weight distri-
bution and parallel execution can significantly enhance the
computational efficiency of large-scale language models.

3. Experimental Environments and Setup
Our experiments were conducted within a controlled lab-

oratory environment utilizing the SOL GPU cluster. This
cluster is equipped with single-node configurations, each
node hosting up to four NVIDIA A100 GPUs, renowned
for their high computational capabilities and efficiency in
handling large datasets and complex neural network opera-
tions.

The experimental setup was configured with PyTorch, a
popular deep learning framework known for its flexibility
and ease of use. PyTorch facilitated the implementation of
both model parallelism and tensor parallelism by allowing
custom partitioning of model weights across GPUs. The
partitioning strategy was specifically designed to optimize
the attention head dimensions for tensor parallelism.

For our inferencing tests, the batch size was set at four to
balance throughput with GPU memory constraints. We uti-
lized prompts from the Alpaca dataset, which is well-suited
for evaluating performance across different NLP model
configurations. The dataset’s diversity in text prompts

2



helped in assessing the robustness of our parallelism im-
plementations under varied linguistic inputs.

4. Evaluation Results
Upon analyzing our implementation, it becomes evident

that regardless of whether we employ llama 2 7b or 70b, the
tensor parallel approach consistently outperforms its model
parallel counterpart. This observation is particularly strik-
ing when considering specific metrics. For instance, when
utilizing 4 GPUs, the llama 13b model parallel configura-
tion achieves a throughput of 88 tokens per second.

In stark contrast, a comparable implementation em-
ploying tensor parallelism achieves a substantially higher
throughput of 138 tokens per second. This notable discrep-
ancy underscores the superior efficiency and effectiveness
of the tensor parallel approach in our context. Such findings
not only validate our decision to explore parallel computing
techniques but also highlight the significant performance
gains achievable through strategic implementation choices.
As we delve deeper into our analysis, these results serve
as crucial insights guiding our ongoing optimization efforts
and shaping our future research directions.

Figure 4. Results of Model and Tensor Parallelism Evaluation

4.1. Evaluation Graphs

In our endeavor to comprehensively assess performance,
we’ve graphically represented the results of our bench
marking tasks. The line graph in figure 2 provides a vi-
sual depiction of the tokens processed per second, with each
line representing the number of GPU utilized in our exper-
iments. This visualization offers a clear illustration of how
throughput scales with increasing computational resources.
Additionally, to underscore the performance disparity be-
tween the tensor parallel and model parallel approaches,
we’ve incorporated a bar graph in figure 3. This graph
serves as a succinct visual aid, effectively showcasing the
notable performance gain achieved through the implemen-
tation of tensor parallelism compared to its model paral-

Figure 5. Model Parallel vs. Tensor Parallel

lel counterpart. By combining these graphical representa-
tions, we gain deeper insights into the relative efficiencies
of different parallel computing strategies, thereby inform-
ing our decision-making process and directing our focus to-
wards avenues that promise the greatest performance en-
hancements.

5. Future Works
Looking ahead, our research trajectory aims to delve into

several promising avenues for enhancing performance and
scalability in deep learning models. One avenue of explo-
ration involves the integration of deepspeed, a cutting-edge
framework known for its potential to significantly optimize
training efficiency. By delving into deepspeed integration,
we aspire to unlock potential performance benefits and fur-
ther streamline our computational workflows. Additionally,
we are eager to broaden our horizons beyond the realms
of model and tensor parallelism. Exploring alternative par-
allel computing techniques holds promise for uncovering
novel approaches to tackling the complexities of training
large language models. Furthermore, our future endeav-
ors include conducting more expansive benchmarking ex-
ercises encompassing a diverse array of models and hard-
ware configurations. By extending our benchmarking ef-
forts beyond the confines of 2 and 4 GPUs, we aim to gain a
more comprehensive understanding of performance dynam-
ics across varied scenarios. Through these multifaceted in-
vestigations, we aspire to continually push the boundaries of
performance optimization in deep learning, ultimately ad-
vancing the state-of-the-art in the field.

3



Figure 6. Performance gain via Tensor Parallel

6. References
1. minabadi, R. Y., Rajbhandari, S., Awan, A. A.,

Li, C., Li, D., Zheng, E., Ruwase, O., Smith, S.,
Zhang, M., Rasley, J., He, Y. (2022). DeepSpeed-
Inference: Enabling Efficient Inference of Trans-
former Models at Unprecedented Scale. arXiv.
https://doi.org/10.1109/sc41404.2022.00051

2. Bai, G., Chai, Z., Chen, L., Wang, S., L¨u, J.,
Zhang, N., Shi, T. W., Zhao, Y., Zhu, M., Zhang,
Y., Yang, C., Cheng, Y., Zhao, L. (2023).] Be- yond
Efficiency: A Systematic survey of Resource- Effi-
cient Large Language models. arXiv (Cornell Uni-
versity). https://doi.org/10.48550/arxiv.2401.00625
Flame Graphs — Wikimedia performance. (n.d.).

3. https://performance.wikimedia.org/php-profiling/

4. Gregg, B. (n.d.). Flame Graphs.
https://www.brendangregg.com/flamegraphs.html

5. Liu, Y., He, H., Han, T., Xu, Z., Liu, M., Tian, J.,
Zhang, Y., Wang, J., Gao, X., Zhong, T., Peng, Y.,
Xu, S., Wu, Z., Liu, Z., Zhang, X., Zhang, S., Hu,
X., Zhang, T., Niu, Q., . . . Ge, B. (2024). Un-
derstanding LLMs: A Comprehensive Overview from

Training to Inference. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2401.02038

6. Optimize TensorFlow performance us-
ing the Profiler. (n.d.). TensorFlow.
https://www.tensorflow.org/guide/profile

7. Rajbhandari, S., Rasley, J., Ruwase, O., He, Y. (2019).
ZERO: Memory Optimizations Toward Training Tril-
lion Parameter Models. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.1910.0205

8. Wang, Q., Chen, Y., Li, Z., Tang, Z., Guo,
R., Wang, X., Zhou, A., Chu, X. (2024). To-
wards Efficient and Reliable LLM Serving: A Real-
World Workload Study. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2401.17644

9. hang, H., Ning, A., Prabhakar, R., Wentzlaff, D.
(2023). A hardware evaluation framework for large
language model inference. arXiv (Cornell University).
https://doi.org/10.48550/arxiv.2312.03134

4


	. Literature Survey
	. Model parallel
	. Pipeline parallelism
	. GPipe
	. Deep speed Zero

	. Method
	. Experimental Environments and Setup
	. Evaluation Results
	. Evaluation Graphs

	. Future Works
	. References

