Recommending with Speed: Comparative Study of
PyVelox, PyTorch, and TensorFlow frameworks and
DeepSpeed and Gpipe for training optimizaitons

Briana Rajan Nhut Nguyen Aditya Madabhushi

{brajan3,nmnguye5,amadab3 } @asu.edu
Department of Computer Science, Arizona State University, Tempe, Arizona 85226

Abstract

In this paper, we explore different machine learning techniques for developing
a recommendation system on various machine learning systems and perform a
comparative study. Recommendation systems are powerful engines using machine
learning algorithms to take in user data and create personalized recommendations.
Furthermore, they can be effective in boosting sales, customer satisfaction, and
overall engagement with the business. In this project, we are focusing on the
e-commerce platform using the Amazon Beauty dataset that has 2+ million data
points and our project compares collaborative filtering, content-based filtering, and
hybrid methods. Our experimental setup involves using PyTorch, Tensorflow, and
PyVelox to implement and compare the performance of our model. The results
indicate that PyVelox performs slightly faster than PyTorch and Tensorflow due to
its fast processing capabilities. Additionally, our experiments with deep learning
optimization techniques like GPipe and DeepSpeed highlight their potential to
improve computational efficiency and scalability. However, we also learned that
PyVelox underfits the data because of the small network, and in future works, we
can use a dataset with more features to provide for more information.

1 Introduction

Recommendation systems are essential part of online platforms, as they help users discover new
products, services, and content that match their preferences. Personalization helps provide the user
with their wants and needs based on their profile. In addition to helping the user, recommendation
systems have proven to show increased sales, increased clicks and conversion rates, and a stronger
brand image. However, building effective recommendation systems requires choosing the right
machine learning techniques and algorithms. The problem we aim to address in this study is to
compare the performance of different machine learning techniques for building recommendation
systems on various machine learning systems, with a focus on collaborative filtering, content-based
filtering, and hybrid methods, using the Amazon Beauty products dataset.

Our first motivation and interest for this project is personalization, which personalizes user experi-
ences by suggesting relevant items based on user preferences and behaviors. We are also focusing
on the complexity in which implementing effective recommendation systems involves dealing with
complex data structures, algorithms, and scalability challenges. Performance is crucial for reducing
recommendation latency and improving scalability, leading to better user experiences. Research and
innovation, focusing ongoing research and development efforts to drive advancements in recommen-
dation algorithms and architectures. And last, business impact, which can lead to tangible business
benefits such as increased sales, customer satisfaction, and market competitiveness. This problem is
interesting because it explores the intersection of user preferences, machine learning algorithms, and



business impact within the context of recommendation systems. By comparing the performance of
various techniques on real-world datasets like the Amazon Beauty products dataset, we can uncover
insights into how different approaches impact personalization, scalability, and ultimately, business
outcomes. Additionally, the study addresses the ongoing challenge of enhancing recommendation
systems’ effectiveness amidst evolving user behaviors and technological advancements, making it a
compelling area for research and innovation.

2 Literature Review

Recommendation systems have become an integral part of many online platforms, helping users dis-
cover new products, services, and content that match their preferences. The field of recommendation
systems has seen significant advancements in recent years, with a wide range of machine learning
techniques being applied to build more accurate and personalized recommendation systems. In this
literature review, we will discuss some of the key papers that have contributed to the development of
recommendation systems, focusing on various methods.

Collaborative filtering, a widely used recommendation technique, leverages past user preferences
to predict future ones. It can be user-based or item-based and is known for uncovering hidden
correlations without extensive data mapping. However, it is prone to the cold start problem. In
their 2008 paper [10], Hu, Koren, and Volinsky introduced the Alternating Least Squares (ALS)
algorithm for implicit feedback datasets, which has shown superior performance. ALS is an iterative
optimization algorithm that minimizes the difference between predicted and actual ratings, and it is
particularly effective for large-scale datasets.

Content-based filtering, another popular technique, relies on the similarity of user preferences for
certain attributes. It can be divided into item-based and user-based approaches. A strength is its
ability to overcome the cold-start problem, but it requires user information to be dynamic. In his 2001
paper [3], Karypis presented a content-based filtering approach that uses item attributes to generate
recommendations, making it suitable for domains with sparse user-item interactions.

Hybrid methods combine collaborative filtering and content-based filtering to improve recommenda-
tion accuracy. They aim to leverage the strengths of both techniques while mitigating their weaknesses.
Hybrid methods can be further divided into two sub-techniques: weighted hybrid methods and feature-
based hybrid methods. In their paper "Hybrid Recommender Systems: Survey and Experiments"
(2002)[8], Robin Burke provides a comprehensive survey of hybrid recommender systems. The paper
also presents experimental results comparing the performance of different hybrid approaches.

Steffen Rendle’s paper "Factorization Machines"[9] introduces a novel machine learning model that
combines the advantages of matrix factorization and linear regression. Factorization Machines are
particularly effective for handling sparse data and capturing complex interactions between features,
making them well-suited for recommendation systems.

Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk’s paper "Deep Learning
for Recommender Systems"[2] explores the application of deep learning techniques, such as recurrent
neural networks (RNNs) and convolutional neural networks (CNN5), to recommendation systems.
The paper demonstrates the potential of deep learning models for capturing complex patterns in
user-item interactions and improving recommendation accuracy. The paper “Performance evaluation
of recommender systems”’[6] talked about the abundance of information that led to the development
of recommendation systems and how recommendation systems work. It also talked about the multiple
evaluation methods of recommender systems including offline analytics, user study, and online
experiments.

The paper then categorized the various evaluation metrics from the perspective of machine learning,
information retrieval, human-based interaction, and software engineering. This is useful when we
want to use these various metrics in our project to compare the results of how our recommender
system performs. Optimized algorithms and a recommendation system are especially important in
this age of technology.

In conclusion, the field of recommendation systems has seen significant advancements in recent
years, with a wide range of machine learning techniques being applied to build more accurate
and personalized recommendation systems. Collaborative filtering, content-based filtering, and
hybrid methods are the most commonly used techniques, each with its strengths and weaknesses.



Collaborative filtering is effective for capturing user preferences based on historical interactions, but
it can suffer from the cold start problem for new users or items. Content-based filtering, on the other
hand, can provide personalized recommendations based on item attributes, but it may struggle with
sparsity in user-item interactions. Hybrid methods aim to combine the strengths of collaborative
filtering and content-based filtering, leading to improved recommendation accuracy.

3 Dataset Description

This dataset contains over two million records from Amazon sales of beauty products, taking up 78.6
MB of space. It offers a detailed view of customer purchase behaviors and preferences in the beauty
sector. The key attributes included in the dataset are:

» Userld: A unique identifier for each customer that helps in analyzing individual buying
habits.

* Productld: A unique code for each beauty product, useful for identifying popular items
and trends in product sales.

» Rating: Ratings from one to five stars provided by customers, crucial for assessing satisfac-
tion and product quality perceptions.

* Timestamp: The time each rating was made, useful for examining how sales and customer
preferences change over time.

4 Comparative Analysis

4.1 Pytorch, Pyvelox and Tensorflow

In the landscape of deep learning frameworks, PyTorch, PyVelox, and TensorFlow stand out as
prominent choices. Each framework offers unique features and capabilities, catering to different
needs and preferences within the machine learning community. In this section, we delve into a
comparative analysis of these frameworks, exploring their strengths, weaknesses, and suitability for
building a recommendation system.

4.1.1 Experimental Environment

In this project, the experimental studies were conducted on the same environment to ensure consis-
tency and efficient performance. For PyTorch, Pyvelox, and Tensorflow, we used Google Colab which
provides a flexible platform for executing our models with free access to GPUs and TPUs. Google
Colab supports various libraries and frameworks, which allowed us to implement and test our models
using TensorFlow, PyTorch, and PyVelox. The easy integration of these frameworks facilitated the
development, training, and evaluation of our recommendation systems. We used Python as the main
programming language.

4.1.2 PyTorch: Empowering Research and Production Deployment

PyTorch has gained widespread popularity among researchers and practitioners for its dynamic
computation graph and intuitive programming interface. Unlike static graph frameworks like Ten-
sorFlow, PyTorch offers a dynamic graph computation paradigm, allowing for more flexible model
construction and debugging. Moreover, PyTorch provides robust support for production deployment
through tools like TorchScript and TorchServe, enabling seamless integration of trained models into
production systems. With its rich ecosystem of libraries and active community support, PyTorch
remains a versatile choice for both research and real-world applications.

4.1.3 Pyvelox: Unified Data Engine

PyVelox is an open-source, Python-based framework for building and training Py Velox is an open-
source Python library that provides bindings and extensions for Velox. Currently in the Alpha stage,
PyVelox is still in the process of development and does not have a stable release.



Velox is an open-source, state-of-the-art unified execution engine developed by Meta. It aims to
speed up data management systems and streamline their development by unifying the common data-
intensive components of data computation engines. Velox provides a framework for implementing
execution engines, consisting of all data-intensive operations executed within a single host, such as
expression evaluation, aggregation, sorting, joining, and more.

Velox is designed to efficiently support complex data types and provides numerous runtime optimiza-
tions, such as filter and conjunct reordering, key normalization for array and hash-based aggregations
and joins, dynamic filter pushdown, and adaptive column prefetching. It also leverages dictionary
encoding for cardinality-increasing and cardinality-reducing operations such as joins and filtering.

4.1.4 TensorFlow: Scalability and Ecosystem Integration

TensorFlow, developed by Google, offers scalability and comprehensive ecosystem integration, mak-
ing it a preferred choice for large-scale machine learning projects. TensorFlow’s static computation
graph optimization enables efficient execution across distributed computing environments, making it
well-suited for training complex models on massive datasets. Furthermore, TensorFlow’s extensive
ecosystem includes high-level APIs like Keras for rapid prototyping, TensorFlow Extended (TFX)
for end-to-end ML pipeline development, and TensorFlow Serving for model serving in production.
However, TensorFlow’s learning curve can be steep for beginners due to its complex API design and
static graph construction.

4.1.5 Experiment setup and Model Architecture

In this section, we present a comparative analysis of the performance of PyTorch, TensorFlow, and
PyVelox based on the results obtained from a data processing and model training task. For our
experiments, we employed a neural network architecture consisting of an input layer with 3 neurons
(assuming input vectors have a size of 3), three hidden layers, and an output layer with a single neuron.
The activation function used in each hidden layer was Rectified Linear Unit (ReLU), a popular choice
in deep learning due to its simplicity and effectiveness in handling non-linearities. The experiments
were conducted using a dataset comprising 10,000 points, with each framework trained for 3 epochs.
The following metrics were evaluated: time taken for processing and training, Root Mean Squared
Error (RMSE), and Mean Absolute Error (MAE).

4.1.6 Results

Simple Data Retrieval Comparison

Time for retrieval (sec) 23.58 2123.21

Memory Footprint 168 232
(Bytes)
Compression Rates wrt 2.57e-05 5.40e-05 7.45e-05
DataFrame (%)

Figure 1: Memory Footprint and Data Retrieval Time Comparison

In this experiment, we conducted a comparative analysis of retrieval times and memory utilization
across three distinct data structures: PyTorch tensors, TensorFlow tensors, and Py Velox vectors for .
Our investigation revealed intriguing findings regarding memory usage, where all three structures
exhibited similar memory footprints and compression rates. However, when it came to retrieval
times, PyVelox vectors stood out notably, showcasing significantly lower retrieval times compared to
PyTorch and TensorFlow tensors.



PyTorch TensorFlow

15 sec 17sec 13 sec
.37 0.4 0.37

0.0563 0.067 0.0563

Figure 2: Four Layered Neural Network Result Comparison

* Time Taken PyVelox demonstrates the shortest time for data processing and model training,
completing the task in 13 seconds, followed by PyTorch with 15 seconds, and TensorFlow
with 17 seconds.

* RMSE Both PyTorch and PyVelox achieved an RMSE of 0.37, while TensorFlow exhibited
a slightly higher RMSE of 0.4. This suggests that PyTorch and PyVelox produced more
accurate predictions compared to TensorFlow for this specific task.

* MAE PyTorch and PyVelox achieved the same MAE of 0.0563, while TensorFlow reported
a slightly higher MAE of 0.067. Similar to RMSE, this indicates that PyTorch and PyVelox
yielded lower absolute prediction errors compared to TensorFlow.

4.2 DeepSpeed and Gpipe
4.2.1 Experimental Environment

For the optimization of the project, we used ASU Sol HPC for our environment and the following GPU
specifications: NVIDIA A100 - SXM4, 4 cores, 80 GB of memory. To ensure that our experiments
were conducted with high efficiency and accuracy, we used the high-performance computing power
and good hardware specifications.

4.2.2 DeepSpeed

Developed by Microsoft, DeepSpeed is a sophisticated deep learning optimization framework de-
signed to substantially enhance the efficiency and scalability of training processes, particularly when
dealing with very large models or constrained computational resources. This framework introduces
several key advancements that significantly improve the performance of deep learning models:

* Model Parallelism: DeepSpeed effectively employs model parallelism to decompose
a neural network into smaller, more manageable segments. These segments are then
processed in parallel across multiple GPUs, not only accelerating the training process but
also facilitating the training of models that exceed the memory limitations of a single GPU.

e Zero Redundancy Optimizer (ZeRO): Among its most notable innovations, the ZeRO
optimizer drastically reduces memory demand and boosts training speeds. This optimizer
refines the management of memory during training by eliminating redundant data across
GPUs, thus supporting the training of substantially larger models and batch sizes.

* Pipeline Parallelism: DeepSpeed further optimizes processing efficiency through pipeline
parallelism, where the model training workflow is segmented into different stages, each
managed by separate GPUs. This strategy enhances resource utilization and expedites the
training cycle.

* Sparse Attention: Incorporating kernel-level optimizations, such as sparse attention, Deep-
Speed reduces computational loads by concentrating processing power on the most critical
data inputs. This is particularly advantageous for the efficient training of attention-based
models like transformers.

4.2.3 Gpipe

Gpipe, conceived by researchers at Google, is an optimization library that leverages a specific form
of model parallelism known as pipeline parallelism to enhance the training speed and scalability of



large-scale neural networks across multiple GPUs. Gpipe introduces several innovative features that
significantly improve model training throughput:

* Pipeline Parallelism: By partitioning a model into several sequential segments or layers,
with each assigned to different GPUs, Gpipe facilitates simultaneous processing of these
segments. This architecture substantially improves the efficiency of the training process.

» Batch Splitting: In an effort to maximize computational efficiency, Gpipe segments the
input data batch into smaller micro-batches. These micro-batches are then processed
sequentially through the pipeline, enabling continuous and overlapping computations across
GPUs, thereby minimizing idle times and optimizing resource utilization.

* Memory Optimization: Gpipe meticulously manages the retention of activation mem-
ory—essential for backpropagation—to minimize the overall memory footprint required
during training. This careful memory management allows for the training of larger models
without surpassing GPU memory capacities.

* Synchronous Update: To maintain consistency and stability throughout the training process,
Gpipe ensures that model weights are synchronously updated across all segments following
each complete pass of a batch (including both forward and backward passes).

4.2.4 Experiment setup and Model Architecture

In this section, we present a comparative analysis of the optimization techniques DeepSpeed and
Gpipe, using the TensorFlow and PyTorch libraries. The DenseNet-150 architecture utilized in
our experiments consists of a dense block followed by an output layer. The input shape comprises
4 integer features. Each dense block contains fully connected (FC) layers with ReLLU activation
functions and dropout layers to prevent overfitting. The output layer utilizes a sigmoid activation
function for binary classification tasks. Both techniques were evaluated on the entire dataset, assessing
metrics such as time taken for model training, Root Mean Squared Error (RMSE), Mean Absolute
Error (MAE), and accuracy.

O aw e

Memory Utilization per GPU 7.5 GB
core

Figure 3: Gpipe vs DeepSpeed Results

4.2.5 Results

* Time Efficiency: DeepSpeed showed superior time efficiency, completing the training
process in 9.43 minutes, whereas Gpipe took 15 minutes. This represents a significant
reduction in training time, underscoring the effectiveness of DeepSpeed’s optimization
capabilities.

* Root Mean Square Error (RMSE): DeepSpeed achieved an RMSE of 0.1600, in contrast

to Gpipe’s RMSE of 0.177. A lower RMSE suggests that the model’s predictions were more
accurate, with predictions closer to the actual values.

* Mean Absolute Error (MAE): Gpipe recorded a better performance with an MAE of 0.031,
lower than DeepSpeed’s 0.0507. MAE represents the average magnitude of the errors in the
model’s predictions, indicating higher precision in Gpipe’s predictions.



* Accuracy: DeepSpeed produced a more accurate model, achieving an accuracy score of
0.8180, compared to Gpipe’s accuracy of 0.773. Accuracy, a vital metric in classification
tasks, denotes the proportion of correct predictions to the total predictions made by the
model.

* Memory Utilization per GPU core: GPipe utilizes 9 GB of memory per GPU core, while
DeepSpeed requires 7.5 GB per GPU core. This indicates that DeepSpeed has a slightly
lower memory footprint per core compared to GPipe, making it more memory-efficient for
training deep learning models.

5 Conclusion

Based on the results, PyVelox emerges as the top performer in terms of time efficiency, completing
the task in the shortest duration while having similar footprint as the others. Additionally, both
PyTorch and PyVelox exhibit comparable accuracy in terms of RMSE and MAE, outperforming
TensorFlow in this specific experiment. The study provided shows promise in utilizing PyVelox
for data preprocessing and then seamlessly transitioning to PyTorch models for machine learning
functions, promising improvements in time efficiency without sacrificing model accuracy. This
approach not only streamlines the data processing pipeline but also leverages the strengths of both
frameworks, ensuring efficient utilization of computational resources. However, it’s essential to
conduct further experimentation and analysis to validate the suitability of this approach across various
datasets and tasks, ensuring robust performance in real-world applications.

6 Future Work

6.1 Advancements in PyVelox Integration

We aim to enhance the functionality and adaptability of PyVelox by introducing support for exporting
Velox vectors as Apache Arrow data types. This development will enable PyVelox to integrate
seamlessly with a broader range of data processing and machine learning platforms that conform
to the Arrow standard. We anticipate that this compatibility will improve data interoperability and
accelerate PyVelox’s adoption in diverse computing environments.

6.2 Enhancement of Dataset Quality

Moving forward, enhancing the quality and breadth of our dataset will be a primary focus. Currently,
our dataset is limited to only four features, which constrains our models’ ability to predict outcomes
and identify intricate patterns. By enriching the dataset with additional features, we aim to achieve a
more comprehensive representation of the underlying data structure. This expansion is expected to
improve model accuracy and reliability, thereby enhancing the robustness and insightfulness of our
analyses.

6.3 Diversified Computing Architectures

We plan to investigate various computing cores and model structures to assess their impact on perfor-
mance and efficiency. Special emphasis will be placed on exploring mixed-model approaches, which
leverage the unique strengths of different computing technologies. This investigation is designed to
identify the most effective model configurations for various computational tasks, potentially leading
to significant breakthroughs.

6.4 Expanded Feature Analysis

With the expansion of our dataset, we will conduct a detailed analysis of the features to determine
which are the most informative and how they can be optimized to enhance our models. Understanding
the impact of new data on our predictions will allow us to refine our models for improved results.
This analysis is crucial for boosting the accuracy and effectiveness of our predictive capabilities.



References

[1] Alvin, T. P. (2022, November 29). A content-based recommender for e-commerce web store. Medium.
https://towardsdatascience.com/a-content-based-recommender-for-e-commerce-web-store-7554b5b73eac

[2] Balazs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. "Deep Learning for Rec-
ommender Systems." Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM,
2015.

[3] George Karypis. "Content-Based Filtering for Recommender Systems." The Adaptive Web. Springer, Berlin,
Heidelberg, 2001. 325-341.

[4] Gomes, N. D. (2023, January 31). The cosine similarity and its use in recommendation systems. https://naomy-
gomes.medium.com/the-cosine-similarity-and-its-use-in-recommendation-systems-cb2ebd811cel

[5] Meenn. (2022, April 30). Recommendation system for E-commerce shopping (python). Medium.
https://medium.com/@meenn396/recommendation-system-for-e-commerce-shopping-python-8cca5800d8da

[6] Performance evaluation of recommender systems. (n.d.). https://paris.utdallas.edu/IJPE/Vol13/Issue08/1JPE-
2017-08-07.pdf

[7] Recommendation Systems and machine learning. Recommendation Systems and Machine Learning. (n.d.).
https://www.itransition.com/machine-learning/recommendation-systems

[8] Robin Burke. "Hybrid Recommender Systems: Survey and Experiments." User Modeling and User-Adapted
Interaction 12.4 (2002): 331-370.

[9] Steffen Rendle. "Factorization Machines." Proceedings of the 2010 IEEE International Conference on Data
Mining. IEEE, 2010.

[10] Yifan Hu, Yehuda Koren, and Chris Volinsky. "Collaborative Filtering for Implicit Feedback Datasets."
Proceedings of the 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008.



	Introduction
	Literature Review
	Dataset Description
	Comparative Analysis
	Pytorch, Pyvelox and Tensorflow
	Experimental Environment
	PyTorch: Empowering Research and Production Deployment
	Pyvelox: Unified Data Engine
	TensorFlow: Scalability and Ecosystem Integration
	Experiment setup and Model Architecture
	Results

	DeepSpeed and Gpipe
	Experimental Environment
	DeepSpeed
	Gpipe
	Experiment setup and Model Architecture
	Results


	Conclusion
	Future Work
	Advancements in PyVelox Integration
	Enhancement of Dataset Quality
	Diversified Computing Architectures
	Expanded Feature Analysis


