
LLM Performance Optimized by DeepSpeed
Disha Agarwal
dagarw24@asu.edu

Arizona State University
Tempe, Arizona, USA

Uma Maheshwara
Swamy Desineedi
udesinee@asu.edu

Arizona State University
Tempe, Arizona, USA

Kathan Shah
kshah78@asu.edu

Arizona State University
Tempe, Arizona, USA

ABSTRACT
This paper presents a project proposal for CSE 598: Data
Intensive Systems for Machine Learning (DISML), focusing
on the performance evaluation of fine-tuning Large
Language Models (LLMs) with DeepSpeed. The study aims
to address the gap in research regarding the impact of LLM
model architecture (encoder-only, decoder-only, or
transformer models) on system enhancements facilitated by
an optimizer. Specifically, we investigate how different LLM
architectures interact with DeepSpeed, a framework
designed to optimize storage, compute, and other
resources. The experimentation involves baseline
fine-tuning and inference tasks without using an optimizer,
comparing them to the improvements in resource utilization
with DeepSpeed. Two LLM models, including a
decoder-only (GPT-like) model and a transformer model
(comprising both encoder and decoder), are evaluated
using SciTail[6] and Multi-XScience[7] datasets. The
proposed evaluation metrics include the time taken when
running inference on these models.

KEYWORDS
Deepspeed, LLM.etc.

1 INTRODUCTION
Large Language Models (LLMs) have revolutionized natural
language processing (NLP) tasks, showcasing remarkable
capabilities in understanding, generating, and processing
textual data. However, the training and fine-tuning of these
models present significant computational challenges,
demanding extensive computational resources and time. To
address these challenges, specialized frameworks such as
DeepSpeed have emerged, aiming to optimize efficiency
across various dimensions including compute, memory, and
communication.

Despite the advancements in optimizing LLM training
pipelines, there remains a gap in understanding how
different LLM architectures interact with optimization
frameworks like DeepSpeed. Specifically, there is limited

research investigating the impact of model
architecture—such as encoder-only, decoder-only, or
transformer models—on the effectiveness of optimizers.
This gap in knowledge hinders the establishment of best
practices for utilizing LLMs efficiently, particularly given their
widespread adoption and usage across various domains.

This research aims to bridge this gap by conducting a
comprehensive study on the performance evaluation of
fine-tuning large language models with DeepSpeed. The
focus will be on investigating how different LLM
architectures, namely decoder-only and transformer
models, interact with DeepSpeed to maximize resource
utilization and training efficiency.

The proposed research will contribute to advancing our
understanding of the interplay between LLM architectures
and optimization frameworks, thereby informing best
practices for efficient training and fine-tuning of large
language models. By evaluating performance metrics such
as memory usage, fine-tuning time, and throughput, we aim
to provide actionable insights that can guide practitioners
and researchers in optimizing LLM workflows for enhanced
efficiency and scalability.

This report has the following format. The section on related
work gives a brief intro to deepspeed and LLM optimization
using deepseed. The dataset section describes the datasets
and tasks included for the experimentation of our project.
The methodology mentions the experiment setup and
challenges faced. The result of the model inference is in the
result section. The future work section details the scope of
future research and possible extension of this project.

2 RELATED WORKS
As deep learning models expand in size, they offer
significant improvements in accuracy [9]. In the realm of
natural language processing (NLP), the advent of
transformers has led to the development of large-scale
models such as Bert-large (0.3B), GPT-2 (1.5B),
Megatron-LM (8.3B), and T5 (11B). However, as we aim to



push the boundaries further and scale these models to
trillions of parameters, we encounter challenges in training
or fine-tuning them [10]. These challenges include the
limitation of fitting such large models into the memory of a
single device, such as a GPU or TPU. Simply adding more
devices does not suffice to scale the training process
effectively.

2.1 Data, Model and Pipeline Parallelism
Conventional data parallelism (DP) fails to reduce memory
per device and reaches memory limitations for models
exceeding 1.4B parameters on GPUs with 32 GB memory.
Alternative approaches like Pipeline Parallelism (PP), Model
Parallelism (MP), CPU-Offloading, etc., involve trade-offs
between functionality, usability, memory, and
compute/communication efficiency. Balancing these factors
is essential for achieving both speed and scalability in
training.

Among the various existing solutions for training large
models, Model Parallelism (MP) stands out as particularly
promising. However, its scalability is limited beyond certain
model sizes. MP divides the model vertically, distributing
computation and parameters across multiple devices within
each layer, necessitating substantial communication
between layers. Consequently, its efficiency declines rapidly
beyond a single node. Research indicates that a 40B
parameter model utilizing Megatron-LM across two DGX-2
nodes achieves approximately 5 T flops per V100 GPU,
which is less than 5% of hardware peak performance [11].

To address the constraints of current solutions and enhance
the efficiency of training large models, a full-spectrum of
memory consumption on model training is studied and
classified into two main categories: 1) the majority of
memory is occupied by model states, encompassing
optimizer states, gradients, and parameters, and 2) the
remaining memory is utilized by activations, temporary
buffers, and fragmented memory, collectively termed
residual states. Advanced techniques have been introduced
to mitigate these limitations, with our study focusing on
ZeRO (Zero Redundancy Optimizer) to optimize memory
efficiency while maintaining high compute and
communication efficiency. Subsequently, we investigated
the impact of ZeRO on the performance of different model
architectures.

2.2 DeepSpeed
These methods all maintain the complete set of model
states needed throughout the entire training process, even
though not all states are always required during training.
Building on these insights, ZeRO-DP (ZeRO-powered data
parallelism) [3] has been developed to combine the

computational and communication efficiency of data
parallelism (DP) with the memory efficiency of model
parallelism (MP). ZeRO-DP achieves this by eliminating
redundant memory states across data-parallel processes
through partitioning rather than replication. It preserves
computational and communication efficiency by maintaining
the computational granularity and communication volume of
DP using a dynamic communication schedule during
training. ZeRO-DP consists of three primary optimization
stages: 1) Optimizer State Partitioning, 2) Add Gradient
Partitioning, and 3) Add Parameter Partitioning. When all
three stages are enabled, ZeRO can effectively train a
trillion-parameter model. ZeRO is further optimized for
increased CPU and GPU utilization with ZeRO-Offload and
low bandwidth, small batch-size per GPU with ZeRO++ [4]
to overcome the challenges of ZeRO technique in
specialized environments. We utilize various techniques of
ZeRO for our evaluations using the metrics as defined in [2].

3 DATA

3.1 Dataset Description
We use 2 datasets which are a subset of the BigBIO
framework [5] consisting 2 tasks NLI and Summarization

3.1.1 Scitail[6]: The Allen Institute for AI created SciTail,
which is made up of pairs of entailments that are drawn
from questions and replies pertaining to science. The
dataset, which includes 27,026 question-answer pairs
divided into entailment and non-entailment groups, can be
downloaded from the Hugging Face website. It is an
indispensable tool for teaching Machine Learning models to
recognize entailment relationships, particularly in scientific
settings. We have also given an analysis of the input token
length to understand how long a model may take to process
it.



Figure 1: Dataset token distribution for scitail

3.1.2 Multixscience[7]: The summary dataset
Multi-XScience poses a difficult task: given an abstract,
produce related work. This dataset, which has over 30,000
training samples, is available on the Huggingface website.
We plot the token length for input to understand the nature
of the task.

Figure 2: Dataset token distribution for multi_x_science

4 METHODOLOGY
LLMs are widely used for NLP tasks for text generation,
summarization, and classification. LLms consume a lot of
computing and memory resources and need to be optimized
for environmental and efficiency purposes. Here we
evaluate the time needed to run inference on LLMs in
Google Colab specifically for the biomedical domain.

4.1 Data Processing and Exploratory Data
Analysis (EDA)

We explored the data using exploratory data analysis to
better understand it. All datasets were first normalized, with
input attributes and output labels combined into two
columns called input and output. After that, we looked at the
value counts in each column to identify distributions and
classifications. Also, we performed a token length analysis
to understand the tasks and their complexity.

4.2 Flan-T5 Model
FLAN-T5[10] is an encoder-decoder model fine-tuned for
text-to-text tasks, leveraging instruction prompts for its
training regimen. Developed and refined for over 1.8 tasks,
FLAN-T5 exhibits remarkable versatility in handling various
natural language processing tasks, including summarization
and classification. Its architecture is based on the T5 model,

renowned for its efficacy in generating high-quality outputs
across a wide range of NLP tasks. FLAN-T5's fine-tuning
process emphasizes adaptability to diverse tasks and data,
ensuring robust performance in real-world applications. With
its ability to effectively process and generate text based on
instruction prompts, FLAN-T5 represents a significant
advancement in the field of natural language processing,
offering promising opportunities for tackling complex
language understanding and generation tasks.

Flan-t5 has different versions from small, base to large, and
xl size models. For this project, we use the small and base
models with sizes of 60 million and 700 million respectively.
We used the model in generate mode, with no classification
head for both tasks.

Deepspeed Optimization: We used zero optimization
configuration with the optimization stage as stage 3. Within
this stage, key optimizations include offloading the optimizer
and parameter states to the CPU, enabling memory pinning
for efficient data transfers. Additionally, communication
overlap and gradient contiguity optimizations are enabled to
enhance training efficiency.

Figure 3: Deepspeed Configuration

4.3 Llama Model
Llama 2[9] contains several Large Language Models (LLMs)
that have been trained and optimized, ranging in parameter
values from 7 billion to 70 billion. Text summarization is one
of the many content kinds that these models can produce.
The foundational architecture of Llama 2, created by Meta



AI, is a transformer model that has been improved via
fine-tuning and reinforcement learning with human feedback
(RLHF). It is a useful tool for people and organizations who
handle large amounts of textual data. Human assessments
of Llama 2's helpfulness and safety show that it performs
better, is more efficient and is more versatile than
closed-source models like Falcon, MBT, ChatGPT, and
Bard. Llama 2 was trained on extensive text datasets, which
included 2 trillion tokens and over 1 million new human
annotations.

We use the 7b version quantized to 8-bit representation.
Since, Llama is a generative model, for the NLI task we
added “output only the label” to the prompt. For
Multi-x-science the prompt was to generate the related work
given the abstract of the current paper and the cited paper.

5 RESULTS & CONCLUSION
We experimented with 2 types of models and 2 types of
tasks. The 2 tasks were NLI and text generation. As
expected NLI took lesser time than text generation. For all
the experiments Google Colab single free GPU environment
was used.

Flan-T5 Model: We experimented with the small and base
model with and without deepspeed optimization
configuration in the Google colab environment with a single
GPU. For, these models we observed that deepspeed
optimization did not cause any improvement in the time
used for inference. This may be because we used smaller
model sizes hence the observed difference was not
significant. Furthermore, we experimented with inference
and not fine-tuning and the configuration might be more
suited for fine-tuning and not inference. The results are
listed in Table 1.

LLama Model: We experimented with an 8-bit quantized
model in colab, we tried to use it for deepspeed optimization
but we discovered that since the model had already been
quantized deepspeed configuration couldn't optimize it
further.

Table 1: Results of inference on Google Colab

Model Dataset Deepspeed
yes/ no

Time

google/flan-t5-
small

Scitail no 3.9ms

google/flan-t5- Multi-x-sc no 44.7ms

small ience

google/flan-t5-
small

Scitail yes 9.6ms

google/flan-t5-
small

Multi-x-sc
ience

yes 113.8ms

google/flan-t5-l
arge

Scitail no 29.2ms

google/flan-t5-l
arge

Multi-x-sc
ience

no 389.7ms

google/flan-t5-l
arge

Scitail yes 29.5ms

google/flan-t5-l
arge

Multi-x-sc
ience

yes 494.8ms

Figure 4: Results for larger models
courtesy:https://www.philschmid.de/fine-tune-flan-t5-deepspeed.

As we can see in Figure 4, we expect to get similar results
on our datasets if we run inference and fine-tuning
experiments on larger flan-t5 models and multi-GPU
environments which are expensive to set up.

Also, we tried using SOL but ran into errors with the
installation of libraries with the Python environment(we did
not spend much time on debugging this as the setup was
working in colab) and hence stuck to colab.

To sum up, key findings have been that deepspeed zero
configuration doesn't show time improvement for smaller



models on inference of both tasks. At least for the Google
colab setup we used.

6 FUTURE WORKS
The present study initiates a foundational exploration into
the intricate synergy between Large Language Model (LLM)
architectures and the DeepSpeed framework, with a primary
focus on performance optimization. Delving beyond the
purview of ZeRO optimization techniques, DeepSpeed
offers a wealth of additional functionalities ripe for
exploration. Future research endeavors can delve into the
nuanced impact of features such as gradient accumulation,
mixed-precision training, and activation checkpointing on
the performance of LLM architectures within the
DeepSpeed framework.

While our study’s lens primarily concentrates on evaluating
inference time, future research horizons beckon towards
broader applications in real-world Natural Language
Processing (NLP) tasks. Tasks like question answering,
summarization, or machine translation present fertile ground
for benchmarking DeepSpeed-optimized LLM architectures.
By extending evaluations to encompass these practical
applications, researchers can gain invaluable insights into
how optimization techniques translate into tangible
improvements in application-specific performance metrics.

As the boundaries of deep learning continue to expand,
scalability emerges as a pivotal consideration. Future
research can explore the scalability of
DeepSpeed-optimized LLM architectures to larger model
sizes, potentially extending into the realm of models
housing trillions of parameters. Additionally, investigations
into DeepSpeed’s performance across advanced hardware
platforms like TPUs or custom AI chips hold promise for
uncovering insights into its adaptability across diverse
computing environments.

Moreover, amidst the rich tapestry of optimization
frameworks tailored for large-scale language models,
comparative studies offer a compelling avenue for future
exploration. By comparing DeepSpeed against alternative
frameworks such as Megatron-LM or TensorFlow,
researchers can illuminate the relative strengths and
weaknesses of different optimization paradigms. Such
analyses promise to inform practitioners on the optimal
selection of frameworks for specific LLM architectures,
fostering advancements in model efficiency and
performance.

ACKNOWLEDGMENTS

We would like to express our gratitude to Dr. Jia Zou and
the teaching assistant Soham Nag for providing us with this
wonderful opportunity to work on this project.

REFERENCES

[1] BetterProgramming. 2022. Frameworks for Serving LLMs.
BetterProgramming.
https://betterprogramming.pub/frameworks-for-serving-llms-60b7f7b234
07

[2] Databricks. 2022. LLM Inference Performance Engineering Best
Practices. Databricks Blog.
https://www.databricks.com/blog/llm-inference-performance-engineering-
best-practices

[3] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, & Yuxiong He.
(2020). ZeRO: Memory Optimizations Toward Training Trillion Parameter
Models.

[4] Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Connor Holmes,
Samyam Rajbhandari, Olatunji Ruwase, Feng Yan, Lei Yang, and
Yuxiong He. 2023. ZeRO++: Extremely Efficient Collective
Communication for Giant Model Training. ACM Trans. Comput. Syst. 42,
1, Article 1 (January 2023), 30 pages.
DOI:https://doi.org/10.1145/1234567.1234567

[5] Fries J, Weber L, Seelam N, Altay G, Datta D, Garda S, Kang S, Su R,
Kusa W, Cahyawijaya S, Barth F. Bigbio: a framework for data-centric
biomedical natural language processing. Advances in Neural Information
Processing Systems. 2022 Dec 6;35:25792-806.

[6] Pietro Lesci. Year. SciTail. Hugging Face Datasets.
https://huggingface.co/datasets/pietrolesci/scitail

[7] Multi-X Science Sum. Hugging Face Datasets.
https://huggingface.co/datasets/multi_x_science_sum?row=12

[8] Microsoft. 2024. DeepSpeed. GitHub Repository.
https://github.com/microsoft/DeepSpeed

[9] Hugo Touvron, et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288 (July 18, 2023)

[10] Hyung Won Chung, Le Hou,et al. 2022. Scaling Instruction-Finetuned
Language Models. arXiv. DOI:10.48550/ARXIV.2210.11416

[11] Connor Holmes, Masahiro Tanaka et al. 2024. DeepSpeed-FastGen:
High-throughput Text Generation for LLMs via MII and
DeepSpeed-Inference. arXiv:2401.08671v1 [cs.PF]. January 9, 2024.

https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices
https://www.databricks.com/blog/llm-inference-performance-engineering-best-practices

