
MidLLaMAI: Balancing Quantization with Pruning while compressing LLaMA 2

Anusha Alangar
aalanga1@asu.edu

Pranav Hegde
phegde7@asu.edu

Gokul Vasudeva
gvasude2@asu.edu

Abstract

GPT models being close-sourced prove prohibitive in adapt-
ing them to reduced-scope use cases. LLaMA is a family of
autoregressive LLMs open-sourced by Meta, ranging from 7
billion to 70 billion parameters, with the authors finding that a
13B parameter LLaMA model outperformed 175B parameter
GPT-3 in most NLP tasks [13]. The open weights nature of
the LLaMA family of models encourages adaptation to spe-
cialized tasks, such as mobility-focused resource-constrained
computing, enabling natural language generation on the edge.
Looking into the future, we see a need for self-hosting to
augment everyday tasks and personal or home assistants. This
comes with various advantages, namely privacy and security,
reduced and consistent latency, cost savings in the long run,
the ability to have greater context windows and fine-tuning
to your preference. Compression of model parameters gets
these models closer than ever towards this goal, but there is
ambiguity in the necessary tradeoffs to be made to proceed.
We consider the application of offline quantization techniques
like GPTQ and AWQ as well as runtime quantization via Bits
and Bytes, in conjunction with GBLM-based pruning, seeking
to find a suitable balance between VRAM usage, inference
latency and accuracy.

1 Introduction

LLaMA models fall under a class of NLP models that are
capable of achieving tasks through few-shot instructions or
examples. These models are based on transformers, whereby
input text is split into n-grams encoded as tokens and every to-
ken is vectorized through word table lookups in an embedding
layer. A parallel multi-head attention mechanism is used to
decipher the context for other tokens at each subsequent layer,
resulting in boosted signals for more relevant tokens [14]. Un-
embedding layer converts the final vector representations back
to a probability distribution over tokens, which results in an ar-
chitecture that is capable of learnable textual generative tasks.
The inception of these models arose from the assumption that

scaling the size of these models would lead to better perfor-
mance. However, more recent work has unearthed superior
performance achieved when training a smaller model on vast
amounts of data, given limited computational resources [8].

On this line of thinking, further reduction in model size
while maintaining the size of the corpus of training data
should prove to provide acceptable levels of performance
for resource-constrained inference tasks, up to a threshold.
There exist various techniques in compression that balance
information retention with model size both in memory as
well as on disk. We consider two techniques, with Quanti-
zation being the more popular and widely used of the two,
where inferences are run by representing the weights and ac-
tivations with low-precision data types, resulting in reduced
computational and memory needs and offline quantization
also resulting in reduced disk usage. Generally, we see an in-
crease in throughput due to combining several multiplication
steps by grouping weights in tensor multiplications.

The other compression technique we consider is prun-
ing, which aims to reduce model size while minimizing loss.
Pruning is a method of compression that involves removing
weights from a trained model based on certain pruning crite-
ria and heuristics. There are two ways to prune, zeroing out
weights called weight-based pruning, or removing nodes, with
the former being more popular as it is easier while having
minimal degradation in accuracy [16]. Prior works mainly
focused on applying one compression technique to maximally
preserve accuracy, without balancing resource constraints and
without considering the implications of applying multiple
compression techniques simultaneously. Our work seeks to
fill these gaps.

2 Background

The Transformer Architecture with Attention Mechanism [14]
upheaved the field of Natural Language Processing, with mod-
els like BERT [3] and RoBERTa [10] achieving state-of-the-
art performance in many Natural Language tasks. Further
improvement was brought forth with the advent of Large



Language Models like GPT [11] and LLaMA [13]. These
models used the same transformer architecture, but scaled
to billions of parameters, achieving surprising generalized
performance. While Large Language Models achieve impres-
sive performance, their large number of parameters leads to
large compute and memory requirements for inference. Sev-
eral methods have been developed to reduce the size of these
models while having minimal impact on performance. While
these techniques applied individually attempt to maximally
preserve accuracy, there has been little in the direction of try-
ing to find a balance between model accuracy with inference
throughput, memory footprint, and performance to VRAM us-
age. These are essential considerations when looking to reach
ubiquity in local LLM hosting, especially considering that 8
GB of VRAM is the median in terms of home computers with
dedicated GPUs as per the April 2024 Steam survey.

Quantization involves reducing the number of bits used to
represent the model weights. It can be divided into mainly
two techniques: Quantization Aware Training (QAT) and Post
Training Quantization (PTQ). In Quantization Aware Training
the LLM is trained with Quantization in mind and the model
and the LLM uses quantized representations of weights during
training itself. In Post Training Quantization, the parameters
of an LLM are quantized after training and might require some
fine-tuning to overcome performance loss. It can also be di-
vided into Offline Quantization where the quantized weights
are stored before the model is loaded, and Online/Runtime
Quantization where quantized weights are calculated dynami-
cally at runtime when the model is loaded.

Pruning can be considered as "trimming the hedges" of
a model, resulting in a size reduction. Edges or nodes are
completely removed from the computation graph, however,
there is a distinction in the taxonomy based on the criteria
used for trimming. Pruning at a high level can be divided into
Structured [4] and Unstructured [15] Pruning. Unstructured
Pruning prunes the model without any regard for its structure,
resulting in an irregular sparse representation and requires
specialized compression techniques for storage. Structured
Pruning removes entire components such as neurons, chan-
nels and layers from the model while maintaining the overall
structure of the LLM.

3 Methodology

We focus our attention on a few techniques, as evaluating
combinations of approaches will prove to be prohibitively
expensive. For example, even just applying a fast quantiza-
tion technique once takes half a dozen hours to complete
on an Nvidia A100 or A6000. In conjunction with multiple
quantization and pruning techniques, limiting scope becomes
paramount.

3.1 GPTQ [5]
GPTQ is a post-training quantization offline technique where
each row of the weight matrix is quantized independently
to find a version of the weights that minimizes quantization
error. These weights are quantized to 4-bit integers, but they’re
restored to 16-bit floating point on the fly during inference.
This saves memory usage by 4 times because the integer
weights are dequantized in a fused kernel. We also expect
a speedup in inference as using a lower bit width takes less
communication time. Figure 1 shows the working of GPTQ.

Figure 1: GPTQ

3.2 Activation Aware Weight Quantization [9]

Figure 2: Activation Aware Weight Quantization

Activation Aware Weight Quantization (AWQ) is another
offline quantization technique. It is an effective method for
low-bit weight-only LLM compression, and it stems from
the observation that not all weights are equally important in
LLMs, with potentially needing to only protect roughly 1% of
parameters. It performs per-channel activation aware scaling
to reduce the quantization loss of salient weights. AWQ does
not over-fit the validation set and preserves generality. Figure

2



2 shows the working of Activation Aware Weight Quantiza-
tion.

3.3 NormalFloat Quantization [2]
NormalFloat (NF) Quantization was introduced as a part of
the QLORA Algorithm for LLMs. It first normalizes the
weights to have zero mean and unit variance. Weight ranges
are then mapped into 4-bit values for storage. During runtime,
these are transformed back into the original weight ranges for
use in the model. Figure 3 shows the working of NormalFloat
Quantization.

Figure 3: NormalFloat Quantization

3.4 LLM.int8() Quantization [1]

Figure 4: LLM.int8() Quantization

LLM.int8() Quantization multiplies outliers in 16-bit float-
ing point with non-outliers in int8, before converting non-
outlier values back to 16-bit floating point and adding them
together to finally return the weights in FP16. This reduces
the degradative effect outlier values have on a model’s perfor-
mance, with no on-disk storage reduction. Figure 4 shows the
working of LLM.int8() Quantization.

3.5 Gradient-Based Language Model Pruning

Gradient-Based Language Model (GBLM) Pruning is a
sparsity-centric method for pre-trained LLMs. It leverages
the first-order term in the Taylor expansion of the optimal
brain surgeon framework, operating in a training-free manner
by harnessing normalized gradients from a few calibration
samples to determine the pruning metric. Figure 5 shows the
working of GBLM Pruning.

Figure 5: Gradient-Based Language Model Pruning

4 Evaluation Suite

We use the LLaMA 7B Chat model as the baseline for our
evaluations. We compare this base model with the following
five compressed models - 4-bit LLaMA 7B Chat quantized
using GPTQ, 4-bit LLaMA 7B Chat quantized using Nor-
malFloat Quantization, 4-bit LLaMA 13B Chat quantized
using GPTQ, 4-bit LLaMA 13B Chat quantized using AWQ
and finally 8-bit LLaMA 7B Chat quantized using LLM.int8()
followed by GBLM Pruning.

All of the evaluations were done using a system with an
RTX 4070 GPU with 8GB VRAM. We used the A100 GPU
provided by the ASU Sol Supercomputer to evaluate the base
LLaMA 7B model as it would not fit on an 8GB GPU. Key
performance metrics such as the time taken by the models
for evaluation on benchmark datasets, GPU VRAM utiliza-
tion and compression ratio of the algorithms are captured.
These metrics combined with the performance on benchmark
datasets provide a holistic comparison of different compres-
sion techniques and their effect.

We evaluate these models on the following three standard
NLP benchmarks.

4.1 WikiText-2 Perplexity

The Wikitext-2 dataset consists of over 100 million tokens
gathered from the set of Good and Featured articles from
Wikipedia. Perplexity is a measure of how uncertain a model
is in predicting the distribution of tokens in a corpus. Low
perplexity scores indicate that the model is better at predicting
sequences in that dataset.

3



LLaMA Chat 7B LLaMA Chat 13B
Base 4-bit NF 4-bit GPTQ LLM.int8() + GBLM 4-bit GPTQ 4-bit AWQ

Size on Disk (MB) 13803.52 13312 3788.8 13312 6963.2 6963.2
GPU VRAM Use (MB) 13803.52 4856 4786 7522 7770 7772
WikiText-2 Perplexity 95.74 94.23 118.11 114.62 86.077 61.01
WikiText-2 Time (s) 1606.26 1100 892.5 651.83 1687.87 2790.1
MMLU Score 0.3428 0.4646 0.4439 0.3428 0.5221 0.529
MMLU Time (s) 522.92 552.9 480.33 394.53 868.85 634.73
BBH Score 0.3741 0.3629 0.3518 0.3148 0.4481 -

Table 1: Compressed Models Evaluation Results

4.2 Massive Multitask Language Understand-
ing [6]

The Massive Multitask Language Understanding (MMLU)
Dataset evaluates models in zero-shot and few-shot settings
to benchmark the knowledge acquired during pre-training.
It consists of 57 subjects covering fields such as STEM, the
humanities, the social sciences, and more. Due to limited
resources, we evaluate on a 50% subset of the dataset, with
examples chosen randomly.

4.3 BIG-Bench Hard [12]
BIG-Bench is a collaborative suite of over 200 benchmarks
that focuses on tasks believed to be beyond the capabilities
of current Large Language Models. BIG-Bench Hard is a
subset consisting of 23 tasks where prior language models
were unable to outperform humans. Similar to MMLU, due
to resource constraints, we evaluate on 10% of this dataset

5 Results and Discussion

Table 1 contains the results obtained for the evaluation suite
mentioned in the previous section. In general, we observe
that compressed models take up less GPU VRAM and have
a faster inference time, as expected. The compressed models
also obtain reduced scores on the benchmark dataset, the mag-
nitude of reduction varying based on the algorithm used. Com-
paratively, NormalFloat Quantization performs the best, even
beating the base model in some tasks, while LLM.int8() with
GBLM Pruning has the most degradation in performance.

Another key observation is that the quantized versions of
the larger LLaMA 13B Model performed the best across all
benchmarks, beating the Base LLaMA 7B model while also
having less VRAM usage. However, their inference speed
was slower than the base LLaMA 7B model.

Figure 6 plots the VRAM usage against benchmark time
for all models. Even though the LLM.int8() with GBLM
model had the lowest score on the benchmarks, it has the
fastest inference speed, thus making this method enticing
for latency-critical applications. Both the GPTQ and Nor-
malFLoat models have similar VRAM usage and Inference

Speed. As expected, the quantized versions of the 13B model
were the largest and slowest (but still smaller than the base
7B model).

Figure 6: GPU VRAM Usage (MB) vs Benchmark Time (s)

We also plot the compression ratio of the algorithms in
Figure 7, which was calculated by dividing the base model
VRAM usage by the quantized model VRAM usage. An
interesting trend to note is that the compression ratio is higher
for the 13B Quantized models, indicating that we might be
able to achieve a larger reduction in VRAM usage for bigger
models.

On average, the NormalFloat Quantization algorithm per-
formed the best, with minimal loss in accuracy and an impres-
sive reduction in VRAM usage and inference time. Quanti-
zation in conjunction with pruning seemed to reduce model
performance quite a bit but also obtained impressive gains
in inference speed, indicating the usefulness of pruning algo-
rithms in improving latency.

6 Conclusion and Future Work

We compared and contrasted several compression techniques
for LLMs using the popular LLaMA 2 7B and 13B models
for our evaluations. Each technique tested has its advantages

4



Figure 7: Compression Ratios

and disadvantages, with NormalFloat Quantization being the
best on average, and pruning being the best for increasing
inference speed. We also noticed that compression versions
of bigger models outperformed the uncompressed versions
of smaller models in benchmark scores and VRAM usage.
Thus in VRAM-constrained environments, we suggest using
compressed versions of bigger models over uncompressed
smaller models.

In the future we plan to evaluate more models and com-
pression techniques as we were limited this time due to re-
source constraints. One avenue could be exploring the effect
of Knowledge Distillation techniques [7]. A thorough study
on the effects of combining different compression methods
like Quantization, Pruning and Knowledge Distillation would
also prove useful, as we currently only evaluated one model
that combined Quantization and Pruning.

References
[1] DETTMERS, T., LEWIS, M., BELKADA, Y., AND ZETTLEMOYER, L.

Llm.int8(): 8-bit matrix multiplication for transformers at scale, 2022.

[2] DETTMERS, T., PAGNONI, A., HOLTZMAN, A., AND ZETTLEMOYER,
L. Qlora: Efficient finetuning of quantized llms, 2023.

[3] DEVLIN, J., CHANG, M.-W., LEE, K., AND TOUTANOVA, K. Bert:
Pre-training of deep bidirectional transformers for language understand-
ing, 2019.

[4] FANG, G., MA, X., SONG, M., MI, M. B., AND WANG, X. Depgraph:
Towards any structural pruning, 2023.

[5] FRANTAR, E., ASHKBOOS, S., HOEFLER, T., AND ALISTARH, D.
Gptq: Accurate post-training quantization for generative pre-trained
transformers, 2023.

[6] HENDRYCKS, D., BURNS, C., BASART, S., ZOU, A., MAZEIKA, M.,
SONG, D., AND STEINHARDT, J. Measuring massive multitask lan-
guage understanding, 2021.

[7] HINTON, G., VINYALS, O., AND DEAN, J. Distilling the knowledge
in a neural network, 2015.

[8] HOFFMANN, J., BORGEAUD, S., MENSCH, A., BUCHATSKAYA, E.,
CAI, T., RUTHERFORD, E., DE LAS CASAS, D., HENDRICKS, L. A.,
WELBL, J., CLARK, A., HENNIGAN, T., NOLAND, E., MILLICAN,
K., VAN DEN DRIESSCHE, G., DAMOC, B., GUY, A., OSINDERO, S.,
SIMONYAN, K., ELSEN, E., RAE, J. W., VINYALS, O., AND SIFRE,
L. Training compute-optimal large language models, 2022.

[9] LIN, J., TANG, J., TANG, H., YANG, S., CHEN, W.-M., WANG, W.-
C., XIAO, G., DANG, X., GAN, C., AND HAN, S. Awq: Activation-
aware weight quantization for llm compression and acceleration, 2024.

[10] LIU, Y., OTT, M., GOYAL, N., DU, J., JOSHI, M., CHEN, D., LEVY,
O., LEWIS, M., ZETTLEMOYER, L., AND STOYANOV, V. Roberta: A
robustly optimized bert pretraining approach, 2019.

[11] RADFORD, A., AND NARASIMHAN, K. Improving language under-
standing by generative pre-training.

[12] SUZGUN, M., SCALES, N., SCHÄRLI, N., GEHRMANN, S., TAY, Y.,
CHUNG, H. W., CHOWDHERY, A., LE, Q. V., CHI, E. H., ZHOU,
D., AND WEI, J. Challenging big-bench tasks and whether chain-of-
thought can solve them, 2022.

[13] TOUVRON, H., LAVRIL, T., IZACARD, G., MARTINET, X., LACHAUX,
M.-A., LACROIX, T., ROZIÈRE, B., GOYAL, N., HAMBRO, E.,
AZHAR, F., RODRIGUEZ, A., JOULIN, A., GRAVE, E., AND LAMPLE,
G. Llama: Open and efficient foundation language models, 2023.

[14] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES,
L., GOMEZ, A. N., KAISER, L., AND POLOSUKHIN, I. Attention is
all you need, 2023.

[15] ZHANG, T., YE, S., ZHANG, K., TANG, J., WEN, W., FARDAD, M.,
AND WANG, Y. A Systematic DNN Weight Pruning Framework Using
Alternating Direction Method of Multipliers. Springer International
Publishing, 2018, p. 191–207.

[16] ZHU, X., LI, J., LIU, Y., MA, C., AND WANG, W. A survey on model
compression for large language models, 2023.

5


	Introduction
	Background
	Methodology
	GPTQ frantar2023gptq
	Activation Aware Weight Quantization lin2024awq
	NormalFloat Quantization dettmers2023qlora
	LLM.int8() Quantization dettmers2022llmint8
	Gradient-Based Language Model Pruning

	Evaluation Suite
	WikiText-2 Perplexity
	Massive Multitask Language Understanding hendrycks2021measuring
	BIG-Bench Hard suzgun2022challenging

	Results and Discussion
	Conclusion and Future Work

