
Comparison & study of Distributed Deep Learning Training Techniques

Amey Bhilegaonkar

abhilega@asu.edu

Gaurav Hoskote

ghoskote@asu.edu

Ninad Nale

nnale@asu.edu

ABSTRACT
With the rise of large language and multimodal
models, the complexity and size of deep
learning models have proved traditional
single-machine training increasingly expensive
and time-consuming. This limitation impedes
advancements in various AI applications like
image recognition, natural language processing,
and scientific discovery. In this context, various
distributed techniques for deep learning, such
as data parallelism and model parallelism, offer
a promising solution. This project delves into an
explorative study of different strategies in
implementing data parallelism and model
parallelism, the two primary distributed deep
learning training techniques. Our objective is to
gain a comprehensive understanding of their
theoretical underpinnings, practical
considerations, and best practices for
implementation. The results demonstrate that
using these strategies has significant advantages
over the traditional training approaches.

KEYWORDS
Data Parallelism, Model Parallelism, Parameter

Server, TFServe, MLops, Vertex AI, PyTorch

1. INTRODUCTION

Over recent years, machine learning models
have been used on a larger scale by
organizations to find business insights by
leveraging their data. These organizations find
training large and complex models on
traditional single-machine setups slow and
compute-heavy. Hence the problem under the

investigation here is that training large and
complex machine learning models on traditional
single-machine setups is slow and
computationally expensive, hindering
organizations from leveraging them for
large-scale data analysis and business insights.

To overcome these bottlenecks, distributed
deep learning techniques like Data parallelism
and Model parallelism can be leveraged. Both
techniques significantly accelerate training. Data
parallelism distributes the training dataset
across multiple machines, allowing each to train
on a portion concurrently. This effectively trains
the model multiple times simultaneously,
leading to faster overall training. Model
parallelism, on the other hand, splits the model
itself across machines, enabling parallel
computation of different parts. This is
particularly beneficial for very large models that
wouldn't fit on a single machine's memory. This
harnesses the power of multiple processing
units. However, the real-world implementation
of these paradigms requires a nuanced
understanding and adaptation based on specific
model architectures, datasets, and hardware
configurations. By investigating the trade-offs
between data and model parallelism, this
project equips researchers and practitioners
with valuable insights for selecting the optimal
training strategy based on their specific needs.
This report will help gain more understanding
into the potential to accelerate the
development and deployment of cutting-edge
AI models, fostering advancements across
various scientific and technological disciplines.

This report is structured as follows. Section 2
presents a comprehensive literature survey,
summarizing the theoretical underpinnings and

mailto:abhilega@asu.edu
mailto:ghoskote@asu.edu
mailto:nnale@asu.edu


practical considerations of data and model
parallelism. Section 3 details the chosen dataset
for our experimentation. Section 4 delves into
the methodology employed, including the
experimental setup (Section 4.1). Section 5
presents the results obtained from our
experiments, followed by a discussion of their
implications. Finally, Section 6 concludes the
report by summarizing our findings and
outlining potential avenues for future work.

2. LITERATURE SURVEY
This section discusses the related works that we
have studied to understand the concepts
required for the implementation of this project.
We will begin with fundamental information
about each distributed training paradigm
studied, and advance towards various strategies
in tensorflow.

Model parallelism is a technique used to
distribute the training of a large model across
multiple machines. [2] discusses two distributed
optimization algorithms that can be used with
model parallelism: Downpour SGD and
Sandblaster L-BFGS. Downpour SGD is an
asynchronous variant of stochastic gradient
descent (SGD) that allows multiple model
replicas to update the parameters of a model
simultaneously. Sandblaster L-BFGS is a
distributed implementation of the L-BFGS
algorithm, which is a batch optimization
method. The Downpour SGD with the Adagrad
adaptive learning rate procedure was the most
effective method for training deep learning
models on a limited computational budget [2].
Data parallelism is a technique to improve the
execution time of data-intensive workflows by
distributing data processing tasks across
multiple computing resources. [3] proposes a
method to automatically parallelize workflow
activities based on annotations that describe
how activities access and consume data. The
annotations are used to identify opportunities
for data parallelism, such as when activities
process data objects independently or in
groups. The workflow model is then redesigned

to exploit these opportunities by creating
replicas of activities and distributing the input
data among them. The size of batches in data
parallelism affects the training time and
accuracy. [5] investigates the impact of data
parallelism on training time. The findings
demonstrate a three-stage pattern: perfect
scaling where doubling batch size halves
training steps, diminishing returns where the
benefit lessens, and finally reaching a maximum
data parallelism point where further increase
offers no improvement [5]. The study also
explores how factors like model architecture
and optimizer selection influence this
relationship, providing valuable insights for
practitioners aiming to optimize neural network
training through data parallelism [1].
TensorFlow Distributed Training Strategies

TensorFlow offers various distributed training
strategies to facilitate efficient training on
multiple machines. Here, we discuss three
relevant strategies for distributed training:
Mirrored Strategy, Parameter Server Strategy,
and Multi-Worker Mirrored Strategy:

Mirrored strategy is well-suited for synchronous
distributed training on a single machine with
multiple GPUs. It creates a replica of the model
and its variables on each available GPU device.
These replicas, known as MirroredVariables, are
kept in sync through communication and update
aggregation techniques like all-reduce [6].

Parameter Server Strategy caters to both
synchronous and asynchronous distributed
training scenarios across multiple machines. It
employs a dedicated set of machines as
parameter servers, responsible for storing and
managing the model's variables. Worker
machines, containing replicas of the model
architecture, perform computations on their
local datasets and communicate updates to the
parameter servers. This approach allows for
asynchronous training as workers can proceed
with computations without waiting for all
workers to complete a step.



Multi-worker mirrored strategy extends the
Mirrored Strategy concept to a multi-worker
setting. It enables synchronous distributed
training across multiple workers, where each
worker can have multiple GPUs. Similar to the
Mirrored Strategy, each worker maintains a
replica of the model and its variables. However,
communication and synchronization occur
across all worker machines for efficient training
[4].

3. DATASET
In this project we have used the MNIST dataset,
a widely recognized benchmark for evaluating
image classification algorithms. The dataset
consists of around 70,000 images of
handwritten digits (0-9) from various
individuals. Each image is grayscale, centered,
and normalized to a fixed size of 28x28 pixels.
The reasons why MNIST was chosen as the
dataset for this project:

Simplicity and Standardization: The dataset
provides a well-understood and standardized
set of images for classification tasks. The
relatively smaller size and low dimensionality
make it computationally efficient to train and
experiment with various distributed training
techniques. This allows us to focus on the core
concepts of data and model parallelism without
introducing complexities associated with very
large datasets.

Focus on Techniques: By using MNIST, we can
prioritize understanding the theoretical
underpinnings and practical considerations of
data and model parallelism. The relatively
smaller size allows for faster experimentation
and clearer observation of performance
differences between the two approaches. This
focus on the techniques themselves is crucial
for our project goals.

While the MNIST dataset might not represent
the real-world complexities of large-scale image
recognition tasks, it provides an ideal platform
for our initial exploration of data and model

parallelism. The insights gained from this
project will lay the groundwork for tackling
more intricate datasets and real-world
applications of distributed deep learning in the
future.

4. METHODOLOGY
MirroredStrategy: This strategy is suitable for

data parallelism, where the model is replicated

across multiple workers, and each worker

processes a different subset of the data. It uses

all-reduce to aggregate gradients across

workers, enabling synchronous training.

ModelParallelStrategy: This strategy is used for

model parallelism, where different parts of the

model are placed on different devices (e.g.,

GPUs). It allows you to partition the model

graph across multiple devices to train large

models that do not fit on a single device.

ParameterServerStrategy: This strategy uses a

parameter server architecture, where model

parameters are stored on parameter servers,

and workers fetch and update the parameters

during training. This can be useful for large

models that do not fit a single worker.

5. Experimental Setup
Set up the Vertex AI Notebook environment:

● Create a new Vertex AI Notebook

instance with the appropriate machine

type (e.g., Tesla GPU).

● Install the necessary TensorFlow and

distributed training libraries in the

notebook.

Implement data parallelism using

MirroredStrategy:

● Define the model architecture and

training pipeline.



● Wrap the model in the MirroredStrategy

and configure the distributed training

setup.

● Measure and compare the training

speed, convergence, and other

performance metrics with single-worker

training.

Explore model parallelism using

ModelParallelStrategy:

● Explore the partitioning of the model

graph across multiple devices using the

ModelParallelStrategy.

● Study how it manages the

communication and synchronization

between the partitioned model

components.

● Evaluate the performance of model

parallelism, considering factors like

communication overhead and

computational efficiency.

Explore the ParameterServerStrategy:

● Explore the parameter server

architecture, with parameter servers

and worker nodes.

● Go through the documentation for the

training pipeline using the

ParameterServerStrategy.

● Analyze the performance and scalability

of the parameter server approach,

especially for large models.

Document Best Practices:

● Summarize the key learnings and

insights gained from the experiments.

● Provide practical recommendations for

selecting the optimal parallelism

strategy based on factors like model

size, dataset characteristics, and

training objectives.

6. EVALUATION RESULTS

Model Accuracy and Model Loss for 1 GPU vs 2 GPU

Theoretical Scaling vs Real Scaling

Training time for 2 GPUs 78.6 s

Training time for 1 GPU 109.5 s



Power Consumption comparison

7. CONCLUSION & FUTURE WORKS

Based on the results and observations from the

project, we can draw several conclusions:

Performance Improvement with 2-GPU Data

Parallelism: The use of 2-GPU data parallelism

significantly improves the convergence times of

the training phases compared to the single GPU

mode. The model loss is consistently lower for

the 2-GPU model right from the initial epochs,

indicating faster convergence and potentially

better model optimization.

Higher Accuracy with 2-GPU Model: The 2-GPU

model achieves higher accuracy compared to

the single-GPU model. This suggests that the

additional computational resources provided by

the second GPU contribute to better model

training and improved performance.

Diminishing Returns in Speedup: Although the

2-GPU model demonstrates improved

performance over the single-GPU model, it's

important to note that the speedup is not linear.

The 2-GPU model is not twice as fast as the

single-GPU model due to practical factors such

as propagation delay between servers. These

additional factors may limit the scalability of

GPU-based parallelism beyond a certain point.

Consideration of Practical Constraints: In

real-world settings, factors like propagation

delay between servers, communication

overhead, and synchronization overhead can

impact the scalability and speedup achieved by

parallel computing models. It's essential to

consider these practical constraints when

evaluating the performance of parallel

computing approaches.

Future research directions include exploring

alternative parallelization strategies like model

parallelism or hybrid approaches to improve

performance and scalability. Optimizing

communication overhead between GPUs and

servers is crucial, involving techniques such as

reducing data transfer sizes and optimizing

network protocols. Dynamic resource allocation

strategies can enhance efficiency by adaptively

allocating resources based on workload

characteristics. Integrating parallel computing

with advanced hardware architectures, such as

GPUs or TPUs, can further boost performance.

Scalability studies on larger datasets are needed

to understand performance under challenging

conditions. Benchmarking and comparative

studies with other frameworks or hardware

configurations can provide insights into

performance trade-offs and guide

improvements in distributed training

frameworks.

8. REFERENCES
1. TensorFlow: Large-Scale Machine Learning on

Heterogeneous Distributed Systems by

Abadi et al. (2016)

2. Jeff Dean et al., "Large scale distributed deep

networks," Advances in neural information

processing systems, 2012.

https://dl.acm.org/doi/10.5555/2999134.29992

71

3. E. N. Watanabe and K. R. Braghetto,

"Improving Parallelism in Data-Intensive



Workflows with Distributed Databases," 2018

IEEE International Conference on Services

Computing (SCC), San Francisco, CA, USA, 2018,

pp. 209-216, doi: 10.1109/SCC.2018.00034.

4. TensorFlow. (2023, April 18).

tf.distribute.experimental.MultiWorkerMirrored

Strategy.

https://www.tensorflow.org/api_docs/python/t

f/distribute/MultiWorkerMirroredStrategy

5. Shallue, Christopher J., et al. ”Measuring the

effects of data parallelism on neural network

training.” arXiv preprint arXiv:1811.03600

(2018).

6. TensorFlow. (2023, April 18). tf.distribute

https://www.tensorflow.org/api_docs/python/t

f/distribute/

7. Alexander Sergeev, Mike Del Balso: Horovod:

fast and easy distributed deep learning in

TensorFlow.

https://doi.org/10.48550/arXiv.1802.05799

https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy
https://www.tensorflow.org/api_docs/python/tf/distribute/MultiWorkerMirroredStrategy
https://www.tensorflow.org/api_docs/python/tf/distribute/
https://www.tensorflow.org/api_docs/python/tf/distribute/
https://doi.org/10.48550/arXiv.1802.05799

