
Distributed Model Training With Dynamic Gradient
Compression

Yashwanth Kumar Tirupati
Arizona State University

Tempe, USA
ytirupat@asu.edu

Raghavendra Rao Suresh
Arizona State University

Tempe, USA
rsures21@asu.edu

Akschat Arya
Arizona State University

Tempe, USA
aarya9@asu.edu

Abstract—Training machine learning models on large datasets
with high-dimensional data often demands significant compu-
tational resources. Sometimes, these requirements exceed the
capabilities of a single device. To overcome this, distributed
training is employed, where multiple devices work together over
a network to pool their resources for efficient model training.
However, this approach can lead to network congestion, especially
when transferring large gradient information, which can reach
terabytes in size. This congestion can slow down training, making
distributed training less effective. One solution to this is gradient
compression, but it has its own challenges. To address these
issues, we propose a new technique called dynamic gradient
compression. This technique adjusts gradient compression during
training based on various factors, improving the efficiency of
distributed training and enabling effective training of machine
learning models on large datasets.

I. INTRODUCTION AND PROBLEM STATEMENT

In the realm of modern technology, machine learning mod-
els have evolved into intricate systems that demand extensive
data and computational resources for training. These models,
with their ability to learn from data, have revolutionized
various industries, from healthcare to finance, by enabling
intelligent decision-making and predictive analytics.

The process of training machine learning models involves
feeding them with vast amounts of data to enable them to
draw patterns and make inferences based on that data. This
training process can be computationally intensive, especially
when dealing with large datasets.

To effectively handle such data, machine learning models
need considerable hardware resources for computation. This
includes computing power for tasks like matrix multipli-
cations, which are common in loss calculation algorithms.
Moreover, the model adjusts its weights iteratively to minimize
the loss function. This adjustment usually occurs through
optimization algorithms like gradient descent, which compute
gradients of the loss function with respect to the model’s
weights. These gradients are then used to update the weights
to minimize the loss. Computing these gradients involves per-
forming backpropogation which is computationally intensive.

To tackle the intensive computational requirements inher-
ent in training machine learning models, sophisticated meth-
ods such as distributed training have become indispensable.
Distributed training leverages the collective power of mul-
tiple devices operating in parallel, significantly enhancing

the efficiency of model training. Multiple interconnected de-
vices exchange gradients and synchronize their advancements
throughout the training process. While distributed training
admirably reduces training time and eliminates the need for a
single, overpowering machine, it does introduce the potential
hurdle of network congestion. This bottleneck arises from
the substantial volume of gradients exchanged between the
devices, posing a significant challenge within the network
infrastructure.

Gradient compression techniques can be used to address
this challenge, enabling models to train effectively with com-
pressed gradient representations. These techniques streamline
communication among training devices by transmitting com-
pressed information, thereby reducing the required network
bandwidth. Nevertheless, the adoption of any compression
method entails inherent drawbacks, including information loss
and increased computational overhead. Consequently, it might
be beneficial to use gradient compression selectively during
specific phases of the training process to maximize its benefits
while also mitigating its limitations.

In this report we explore how the model performs when
we use our approach of dynamically altering the level of
compression for the gradients being shared between devices
in the network for training. Our effective goal is to help
increase accuracy while trying to reap the benefits of gradient
compression for certain periods of the training phase.

II. PRIOR WORKS

Gradient compression has become a crucial technique for
speeding up distributed machine learning training by reducing
communication costs. This section reviews existing works
relevant to our proposed approach of dynamic gradient com-
pression with an adaptive strategy.

A. Gradient Sparsification

[1] Zhou et al. (2021): Effective Sparsification of Neural
Networks with Global Sparity Constraint: This work proposes
two sparsification techniques: magnitude-based and random.
Magnitude-based sparsification transmits only a user-defined
percentage of the largest gradient elements, achieving signif-
icant communication efficiency. Random sparsification ran-
domly selects a subset of elements for transmission. Both tech-
niques achieve good communication efficiency while main-



taining model accuracy. However, their approach focuses on
a global sparsity constraint, meaning the same sparsity ratio
is applied throughout the training process. This might not
be optimal as gradient magnitudes typically change during
training. In the initial stages, where updates are large, a higher
sparsity ratio might be beneficial.

B. Gradient Compression via Quantization

[3] Lin et al. (2017): Reducing the Communication Band-
width for Distributed Training: This work introduced Deep
Gradient Compression (DGC), a pioneering approach for
gradient compression using quantization. DGC quantizes the
gradients to a lower precision format (e.g., fewer bits) be-
fore transmission, significantly reducing communication costs.
While effective, DGC uses a fixed compression ratio through-
out the training. This might be suboptimal as gradients in
the initial stages tend to have larger magnitudes, allowing
for more aggressive compression without sacrificing accuracy.
Additionally, DGC might require careful selection of the
quantization scheme to balance communication efficiency and
model convergence.

[7] Alistarh et al. (2017): Communication-Efficient SGD via
Gradient Quantization and Encoding: Similar to DGC, this
work proposes QSGD, which utilizes gradient quantization
and encoding for communication efficiency. QSGD employs a
stochastic quantization scheme, where each gradient element
is independently quantized with a certain probability. This ap-
proach can introduce noise into the gradients, but with careful
selection of the quantization scheme and noise injection strat-
egy, it can achieve good communication-accuracy trade-offs.
However, like DGC, QSGD utilizes a fixed compression ratio
throughout training, potentially overlooking the opportunity
for more aggressive compression in the initial phases.

C. Distributed Training with Communication Efficiency

[2] Horvath et al. (2022): Natural Compression for Dis-
tributed Deep Learning: This work explores ”natural com-
pression” for distributed deep learning, leveraging inherent
redundancy in gradients to reduce communication costs. They
observe that gradients often exhibit redundancy, with many
elements having similar values. Their approach exploits this
redundancy by transmitting only unique gradient elements
and their corresponding counts. While offering communication
efficiency, this method might not be suitable for scenarios
where aggressive compression in specific training phases is
desired. Additionally, it might not be effective for all gradi-
ent distributions, potentially leading to situations where the
communication cost reduction is not significant.

D. Adaptive Techniques for Distributed Training

[5] Hardy et al. (2017): Distributed Deep Learning on Edge-
Devices: This work, similar to our approach, proposes an
adaptive compression scheme for distributed deep learning.
However, their work targets resource-constrained edge devices,
where communication bandwidth is a critical concern. They

dynamically adjust the compression ratio based on the avail-
able network bandwidth. While their approach demonstrates
communication efficiency benefits, it might require modifi-
cations for broader distributed training settings, which might
have different resource constraints compared to edge devices.

E. Related Work in Distributed Optimization

[6] Ringström et al. (2018): Communication-efficient Fed-
erated Averaging for Distributed Deep Learning: This work
explores federated averaging, a distributed training approach
where local models are updated on devices and only model
updates are exchanged, reducing communication compared to
synchronous training. While federated learning offers com-
munication benefits, it might not be suitable for all sce-
narios compared to our focus on gradient compression in
synchronous training. Additionally, federated learning might
introduce challenges like non-IID (independent and identically
distributed) data distributions across devices, which can impact
convergence.

[8] Stich et al. (2018): Pipelined Asynchronous Distributed
Training: This work provides an overview of pipelined asyn-
chronous distributed training, a technique that improves com-
munication efficiency by overlapping communication and
computation. However, it does not delve into gradient com-
pression strategies, which is the focus of our work.

[9] Zhang et al. (2018): Adaptive Batch Sizes for Deep
Learning: This work explores adaptive batch sizes for deep
learning. While not directly related to gradient compression,
using larger batch sizes in the initial stages of training can lead
to faster convergence but can also increase the communication
cost due to larger gradients.

III. METHODOLOGY

A. Data Parallelism

Distributed training using multiple GPUs necessitates the
implementation of parallelism to distribute the workload across
resources efficiently. Various techniques can be employed to
achieve this, including data parallelism, tensor parallelism, and
model parallelism. However, it’s crucial to recognize that there
is no universal solution, and the optimal approach depends on
the specific hardware configuration and the specifications of
the model being trained.

In this paper, we mainly deal with data parallelism, with
a specific emphasis on synchronous data parallelism, wherein
the model replicas remain synchronized after processing each
batch. This synchronization ensures that the model’s conver-
gence behavior mirrors that of single-device training. However,
our approach can also be easily expanded to encompass model
parallelism and tensor parallelism.

Data parallelism involves replicating a single model across
multiple devices or machines. Each device processes different
batches of data, and their results are merged afterward. There
are variations in how the model replicas merge their results
and whether they remain synchronized at every batch or are
more loosely coupled. In data parallelism, the current batch
of data, called the global batch, is divided into sub-batches,



one for each GPU. Each GPU’s model replica processes its
assigned local batch independently, executing a forward pass
followed by a backward pass to generate gradients. These local
gradients are then efficiently integrated across GPUs through
inter-GPU communication methods. Synchronization occurs at
the end of each step to maintain consistency across replicas.

B. Gradient Synchronization

We utilize all reduce operation to achieve gradient synchro-
nization across multiple GPUs. Conceptually, this algorithm
involves each process or worker sharing its data with all others
and then applying a reduction operation. This operation, such
as sum, multiplication, max, or min, effectively condenses the
target arrays across all processes or workers into a single array,
which is then returned to each process. Standard all reduce is
preferred for its simplicity and effectiveness, particularly in
evaluating compression effects during experiments.

C. Gradient Compression

During training, gradient compression reduces the data
exchanged between devices via inter-process communication
during backpropagation. This reduction in communication
bandwidth can improve training scalability and efficiency.
Various techniques are available for implementing gradient
compression.

1) Quantization: Quantization is a compression technique
wherein the precision of gradient values is decreased by
converting them into lower bit representations. Quantization
methods have also shown promising results. In [11], a family
of algorithms called QSGD was proposed, based on lossy
gradient compression through quantization. These algorithms
enabled training the ResNet-152 [12] network to full accuracy
on ImageNet [13], achieving a speedup of 1.8× compared to
variants with full-precision gradients.

2) Sparsification: Sparsification selectively transmits only
the non-zero gradient values during communication between
devices. This approach is particularly advantageous for models
with sparse gradients, where a significant portion of the
gradient values are zero. Sparsification techniques have been
explored extensively in recent studies. For instance, one study
[14] proposed sparsifying the gradient tensor by replacing
values below a specified threshold with zeros, achieving a
remarkable 99% sparsification during the training of a fully
connected deep neural network on MNIST [15], with an
impressive accuracy of 99.42%.

D. Proposed Approach

Traditionally, gradient compression techniques utilize a
static compression ratio throughout the training cycle. Some
existing approaches dynamically determine the data to be
exchanged during training using complex pre-trained machine
learning models. But these approached add significant com-
plexity to the training process. Our proposed methodology
introduces a simple approach of dynamic gradient compression
in distributed training. It utilizes an adaptive compression
strategy that evolves across training epochs, responding to

shifts in the model’s validation accuracy. Our goal is to
optimize convergence speed and model accuracy while main-
taining network bandwidth utilization comparable to standard
compression models.

In the initial training phases, we employ aggressive gra-
dient compression because fine-tuned gradient values may
not be necessary. This is because the model is still learning
basic patterns and features from the data, and the updates
made during these phases are often large and general, so
precise gradient values may not significantly impact the overall
training process. However, as training progresses, excessive
compression can lead to loss of vital information needed
for fine-tuning. To mitigate this risk, we gradually reduce
compression, aligning with the evolving needs of the model.
This approach allows for precise adjustments and fine-tuning
while maintaining efficiency and speeding up convergence
rates.

Compression levels are tailored according to key conver-
gence metrics such as validation accuracy and the difference
in cross-entropy training loss. Employing a step function-based
approach, we systematically lower compression levels based
on predefined thresholds, which serve as tuning parameters for
this algorithm. Additionally, to address potential stagnation in
model learning, we incorporate a mechanism to temporarily
remove compression if the model remains trapped at the same
step of the compression step function for an extended period
across multiple epochs.

IV. EXPERIMENTATION

A. Experiment Configuration

1) Hardware Configuration: The experimentation utilized
the computational power of two NVIDIA T4 GPUs. The
NVIDIA T4 GPUs are high-performance graphics processing
units designed for accelerated computing tasks, including deep
learning and artificial intelligence. They are known for their
efficiency in processing complex computations, making them
ideal for training machine learning models.

We used the PyTorch Distributed Data Parallel (DDP)
module to coordinate and manage the GPUs in our program.
This allowed them to work together simultaneously, speeding
up the processing and training of our machine learning model.
By leveraging the capabilities of these GPUs and the DDP
module, we achieved significant improvements in training
speed.

2) Machine Learning Model Architecture: ResNet stands
out as a prominent deep learning architecture renowned for
its ability to tackle the challenges of training extremely deep
neural networks. Leveraging residual connections, ResNet
mitigates the vanishing gradient problem, thereby facilitating
the training of deep networks effectively. ResNet architectures
have consistently demonstrated strong performance across a
wide range of tasks and datasets. This reliability makes them
a good starting point for exploring new methodologies or
techniques. Also, ResNet architectures can be easily adapted
to different input sizes and domains, allowing for experimen-



tation across various datasets and problem domains without
significant architectural modifications.

3) Dataset Used: We have used the CIFAR-10 dataset for
our experiment. It is a widely recognized benchmark dataset
for image classification tasks within the realms of machine
learning. It comprises 60,000 32x32 color images distributed
across 10 distinct classes, each containing 6,000 images. The
dataset is partitioned into 50,000 training images and 10,000
test images, facilitating robust model evaluation.

B. Experiment Setup

For our experiment, we designed three distinct training sce-
narios to assess the effectiveness of our proposed methodology
against existing approaches. These scenarios were carefully
selected to represent different aspects of the training process
and to provide a comprehensive evaluation of our method’s
performance. By comparing the results generated from these
scenarios, we aimed to gain insights into the strengths and
limitations of our proposed methodology compared to existing
methodologies.

1) Standard Training: In the initial scenario, known as
”standard training”, the machine learning model undergoes
training without the application of any compression tech-
niques.

2) Static Quantization Training: The second training sce-
nario, termed ”Static Quantization”, involved training the ma-
chine learning model while applying a constant 8-bit gradient
quantization method throughout the training process.

3) Dynamic Compression Training: Lastly, the third train-
ing scenario, termed ”Dynamic Compression,” implemented
our proposed methodology. In this scenario, the machine learn-
ing model underwent training with a dynamically adjusted
compression rate for gradients, ranging from 4-bit to 16-bit
quantization.

V. RESULTS

In Figure 1, we note that employing the static quantization
compression method, fixed at an 8-bit quantisation, usually hits
a saturation point at around 80-85% accuracy for training data.
Beyond this threshold, weight updates slow down consider-
ably, indicating minimal improvement despite ongoing training
efforts. Conversely, dynamic compression methods exhibit
initially slower training progress due to high compression in
the early stages. Nevertheless, as training advances, it swiftly
converges and approaches the performance level of models
trained without compression.

This pattern echoes in the test accuracy, as depicted in
Figure 2. The static compression method typically plateaus at
approximately 80-85%, whereas the proposed dynamic com-
pression approach achieves accuracy nearing 91%. Similarly,
a comparable trend emerges in the cross-entropy training loss,
as illustrated in Figure 3.

Additionally, when comparing the training durations of all
methods, we observed that both static and dynamic compres-
sion approaches showed similar training times, with the dy-
namic approach being slightly faster. However, it’s important

Fig. 1: Training Accuracy vs Epochs

Fig. 2: Test Accuracy vs Epochs

Fig. 3: Cross Entropy Loss vs Epochs



TABLE I: Performance Evaluation

Compression Method Num
Epochs

Training Accuracy Test Accuracy Training Time(min) Data Transferred(TB)

No Compression 70 96.09 92.96 65.12 2.31
Static Compression 70 82.03 85.97 122.13 1.82
Dynamic Compression 70 94.53 91.40 101.64 2.03

to highlight that both these methods entail longer training
times compared to the model trained without any compression.
This outcome aligns with our expectations, as compression in-
troduces additional computational complexity in each training
step. Given that our project’s primary objective is to improve
the static quantization training method’s convergence speed,
this is an area we can investigate further in future endeavors.

As depicted in Table 1, we conducted measurements on
the number of bits exchanged between the GPUs during
gradient synchronization using allreduce. To evaluate this
metric, we computed the sizes of the compressed gradient
tensors exchanged among the GPUs. Upon analyzing this data,
we noticed that the models employing static and dynamic
compression exhibit reduced data communication compared
to the uncompressed model. Although the dynamic approach
involves slightly higher data transmission, it is still better than
the no compression method.

VI. CONCLUSION AND FUTURE WORK

In conclusion, adjusting the compression level of gradi-
ents based on various training factors proves to be gener-
ally effective in a distributed training environment. While
it results in higher network bandwidth utilization than the
static compression method and longer training times than
the no compression method, it combines the benefits of both
methods, achieving faster convergence speed and maintaining
respectable model accuracy. This methodology provides a
flexible and efficient way to handle network congestion during
training for distributed training architectures, while achieving
a decent model accuracy.

Future work should focus on exploring a broader range
of scenarios to validate the robustness and scalability of the
proposed approach. This includes testing the methodology
across different machine learning models and architectures to
understand its impact on a wider variety of training setups.
Additionally, scaling to a larger number of GPUs can provide
insight into the approach’s efficiency and effectiveness in high-
performance distributed training environments.

Furthermore research should also examine the application
of alternative compression techniques and their potential to
improve training outcomes. This includes investigating dif-
ferent algorithms for determining compression levels on their
impact on training time, model convergence, and accuracy. By
evaluating the approach in diverse and challenging settings, we
can gain a deeper understanding of its strengths and limita-
tions, ultimately guiding the development of more advanced
and efficient distributed training techniques in the future.

REFERENCES

[1] Zhou, Xiao, et al. ”Effective sparsification of neural networks with
global sparsity constraint.” Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021.

[2] Horvóth, Samuel, et al. ”Natural compression for distributed deep
learning.” Mathematical and Scientific Machine Learning. PMLR, 2022.

[3] Lin, Yujun, et al. ”Deep gradient compression: Reducing the
communication bandwidth for distributed training.” arXiv preprint
arXiv:1712.01887 (2017).

[4] Han, Song, Huizi Mao, and William J. Dally. ”Deep compression:
Compressing deep neural networks with pruning, trained quantization
and huffman coding.” arXiv preprint arXiv:1510.00149 (2015).

[5] Hardy, Corentin, Erwan Le Merrer, and Bruno Sericola. ”Distributed
deep learning on edge-devices: feasibility via adaptive compression.”
2017 IEEE 16th international symposium on network computing and
applications (NCA). IEEE, 2017. Here are the references formatted in
LaTeX code and listed starting with

[6] Ringström, P., et al. “Communication-efficient distributed deep learning
with federated averaging.” *arXiv preprint arXiv:1802.07688* (2018).

[7] Alistarh, D., et al. “QSGD: Communication-efficient SGD via gradient
quantization and encoding.” *Advances in Neural Information Process-
ing Systems*, vol. 31, pp. 1709-1720, 2017.

[8] Stich, A., et al. “Pipelined asynchronous distributed training: An
overview.” *arXiv preprint arXiv:1805.07821* (2018).

[9] Zhang, H., et al. “Adaptive batch sizes for deep learning.” *arXiv
preprint arXiv:1804.06124* (2018).

[10] De Sa, C., et al. “High-performance distributed machine learning with
elastic averaging.” *ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining* (2014).

[11] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems (NIPS), 2017,
pp. s 1707–1718.

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[13] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei., “ImageNet:
A large-scale hierarchical image database,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2009.

[14] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Empirical Methods in Natural Language Processing
(EMNLP), 2017.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no.
11, pp. 2278–2324, 1998.


