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Abstract - Advancements in deep learning and computer vision have signifi-
cantly improved video understanding and semantic search, yet challenges
persist due to the high computational demands of state-of-the-art models,
particularly on devices with limited resources. This study investigates the
application of vision transformers and explores model compression tech-
niques and distributed inference frameworks to address these challenges.
We evaluate the efficacy of these technologies on constrained platforms
through comprehensive benchmarks, aiming to enhance model interpretabil-
ity and accessibility of video content without compromising performance.
The project seeks to establish benchmarks for selecting efficient models and
strategies that adapt to various computational limitations, paving the way for
broader applicability in real-world scenarios. This research not only tests the
boundaries of current technologies but also provides valuable insights into
optimizing video processing techniques for resource-scarce environments.
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1 INTRODUCTION

The rapid expansion of video content across various platforms has
necessitated advanced methodologies for video understanding and
semantic search. These technologies stand at the forefront of deep
learning and computer vision research, striving to make video con-
tent more interpretable and accessible. Traditional approaches such
as object segmentation and analysis of optical flow have evolved,
incorporating complex neural networks like ResNet and MobileNet.
These advancements have significantly improved the ability to cap-
ture and interpret the dynamic content within videos.

However, the practical application of these advanced models faces
significant challenges, primarily due to the high computational de-
mands and substantial memory requirements. These challenges are
exacerbated when deploying these technologies on devices with
limited computational resources, such as mobile phones and embed-
ded systems. The variable duration and high data volume of videos
further complicate this issue, often making state-of-the-art video
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understanding models impractical for real-world applications on
such devices.

In response to these limitations, this paper explores the potential
of vision transformers, a novel class of models adapted from the
transformers used in natural language processing, for video under-
standing tasks. Vision transformers have shown promising results in
capturing long-range dependencies within videos, offering an alter-
native to the convolutional approaches traditionally used. Alongside,
we delve into model compression techniques and distributed infer-
ence frameworks as viable solutions to mitigate the computational
and memory constraints of resource-scarce environments.

Our investigation aims to conduct comprehensive benchmarks to
assess the efficacy of these technologies under various constraints.
Through this exploration, we seek to establish a set of benchmarks
that guide researchers and practitioners in selecting the most ef-
ficient models and compression strategies, thereby democratizing
access to cutting-edge video understanding technologies and ex-
panding their applicability across a broader array of devices. This
paper will detail our methodologies, experiments, and findings in
pursuing these objectives.

2 WHY IS IT INTERESTING?

The interest in researching video understanding and semantic search
within videos using advanced deep learning techniques is multi-
faceted and deeply rooted in both the exponential growth of video
content and its vast applications across various sectors. As the world
generates more video data, the necessity for robust, efficient tools to
analyze and extract meaningful insights becomes paramount. These
tools have the potential to revolutionize industries such as surveil-
lance, autonomous driving, healthcare, and content management
by providing advanced capabilities for real-time activity recogni-
tion, traffic condition analysis, patient monitoring, and personalized
content recommendations.

However, the challenge lies in the variable duration of videos and
the significant computational demands required to process them,
particularly on devices with limited resources like smartphones and
embedded systems. This makes the research crucial as it addresses
how to deploy sophisticated video analysis models on such devices
without compromising performance. By focusing on cutting-edge
technologies like vision transformers and exploring model compres-
sion techniques and distributed inference frameworks, the project
not only aligns with the latest developments in AI but also tackles
practical limitations head-on.

The research aims to establish benchmarks and evaluate the per-
formance of these technologies under various constraints, providing
actionable insights that can guide the design of more efficient sys-
tems. This has considerable implications for both academic research
and practical applications, making the project not only academically
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rich but also industrially relevant. The intersection of technologi-
cal innovation and real-world applicability encapsulates why this
research area is of significant interest and importance.

3 RELATED WORK
3.1 TimeSformer

The TimeSformer[1] is a pioneering model that adapts the trans-
former architecture, originally developed for natural language pro-
cessing, to handle video understanding tasks. Unlike conventional

methods that typically rely on convolutional neural networks (CNNs),
the TimeSformer leverages the self-attention mechanism to process

video clips as integral units. This approach allows the model to ef-
fectively capture temporal dynamics across frames, thus enhancing

its ability to understand complex video sequences. Introduced by

Bertasius et al. in 2021, the TimeSformer decomposes the video into

spatial and temporal tokens, applying separate attention mecha-
nisms to each, which reduces computational complexity and allows

for more scalable training across longer video sequences. This model

has shown exceptional performance in tasks such as action recogni-
tion, making it a robust choice for deep video analysis.

3.2 VMAE (Video Masked Autoencoder)

The Video Masked Autoencoder (VMAE)[2] represents a novel ap-
proach in video processing by leveraging the principles of self-
supervised learning, particularly the autoencoding technique, to
enhance video understanding without the need for extensive labeled
datasets. Inspired by the success of masked language models in NLP,
VMAE works by masking portions of video input — typically frames
or patches within frames — and then reconstructing the missing
content. This process encourages the model to learn rich, represen-
tative features of video content, including temporal coherence and
contextual understanding between frames. The ability of VMAE
to generate high-quality video embeddings from unlabeled data
makes it highly effective for a variety of applications, such as video
classification, anomaly detection, and more nuanced video-based in-
ference tasks. By reducing reliance on labeled training data, VMAE
offers a cost-effective and scalable solution for video understanding,
particularly in scenarios where annotated videos are scarce.

4 DATASET

The Kinetics 400 dataset[3], a robust collection used for action recog-
nition research, comprises approximately 650,000 videos categorized
into 400 distinct classes of human actions. Each video is carefully an-
notated with a single action class and is about 10 seconds in length.
For our project, we have selected a sample of 1000 videos from the
validation portion of the dataset. This selection is facilitated by a
CSV file provided with the dataset, which details the category of
each video.

5 METHODS
5.1 Pruning

Pruning is the model compression technique that removes parame-
ters that are not important. It is claimed that some of the essential
parameters are used to make inference instead of involving the
whole parameters. Based on this concept, the pruning compression
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technique is proposed. There are two different pruning approaches:
the first approach is Train-Time Pruning, and the other approach
is Post-Training Pruning. Train-Time Pruning is done during train-
ing simultaneously. Otherwise, post-pruning is the pruning that
occurs after training is completed. From our experiments, we only
performed the pruning after train.
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Fig. 1. Pruning [6]

5.2 Quantization

Quantization is the technique that reduces the parameters by map-
ping the parameters into specific sections. It reduces the larger mem-
ory format of the parameters to lower memory format. Through the
mapping, the complex bit-wise numbers convert into small bit-wise
numbers so that each parameter has reduced size of the parameters.
Similar with pruning, there are two types of pruning exist depend-
ing on the application of the pruning, there are also pre and post
quantization. Post quantization is the quantization that is performed
after training and it has risk that leads to accuracy degradation. Oth-
erwise, the pre-quantization performs weight conversion during
the training.

6 IMPLEMENTATION
6.1 Profiling Models

As specified above, there are modules within the models that con-
sume the most resources, and we aim to prune these modules while
monitoring the sacrifice of accuracy. We profile the two models,
and the results are in Fig. 3 and Fig. 4. To identify these modules,
we analyze the modules within the models that consume the most
memory. The more CPU usage indicates the more time is used for
the modules, so we aim to prune the modules that use the most CPU
based on CPU usage monitoring results.

6.2 Model Compression Strategy

6.2.1  Pruning. We performed two different pruning strategies: global
pruning and local pruning. For unstructured pruning, we adopted
global pruning, which considers entire layers and neurons. And
for structured pruning, we performed local pruning, which focuses
more on individual weights. Structured pruning is more likely to
zero out parameters on a larger range of the whole parameters.
Otherwise, unstructured pruning focuses more on a relatively small
number of parameters than structured pruning.
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Fig. 4. VMAE Profiling

6.2.2  Quantization. We performed two different quantization strat-
egy which are Int8 and Float16, which used to optimize neural net-
work models by reducing the precision of numerical data. Int8 quan-
tization converts floating-point numbers to 8-bit integers, which
drastically reduces the model size and enhances computational effi-
ciency, particularly on hardware optimized for integer operations.
This method is highly beneficial for deployment in environments
with limited computational resources, though it may slightly im-
pact model accuracy due to the reduced numerical precision. On
the other hand, Float16 quantization, also known as half-precision,
involves reducing data from 32-bit to 16-bit floating points. This
format is well-suited for modern GPUs and TPUs that support fast
float calculations, offering a good balance between computational
speed and accuracy retention, making it ideal for applications where
higher numerical precision is necessary.

7.1 Pruning

Model Model Size Sparsity Average Inference
time

Timesformer 488.19 MB 0 70.0% 9.83s

(non-pruning)

(Global Pruning) 488.19 MB 15.95% 67.5% 7.98s

Attention layer + Dense

(Local Pruning) 488.19 MB 6.38% 125% 6.73s

Attention layer

(Local Pruning) 488.19 MB 4.26% 55 % 6.7255

Dense

(Local Pruning) 488.19 MB 1064 % 7.5% 6.701s

Attention and Dense

Fig. 5. Timesformer Pruning
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Fig. 6. VMAE Pruning

We analyzed the models and attempted to compare the pruning
results based on modules. Since both VMAE and Timesformer con-
tain attention modules, we aimed to observe the pruning results
when pruning the attention module and dense layer module. We
observed the performance differences between attention layer prun-
ing, dense layer pruning, and pruning on both attention layer and
dense layer.

Through pruning both the Timesformer and VMAE, we could
observe that the model size does not change. That is because the
way PyTorch performs pruning is by masking the parameters to
make them zero instead of removing the actual parameters. For
this reason, both before pruning and after pruning have the same
model size. For the inference section, as expected before pruning,
the pruned model has worse accuracy than the non-pruned model.
Especially, we could observe that the more pruned the model, the
worse its accuracy compared to the non-pruned model. It gives
us experimental results indicating that balancing efficiency and
accuracy would be very significant.

For the inference time for the pruned model and the non-pruned
model, we could observe that the pruned model could have faster
inference time than the non-pruned model, and this occurs for both
VMAE and Timesformer architectures.

For global pruning, we could observe that global pruning results
in bigger sparsity than local pruning, but the accuracy of global
pruning is higher than local pruning. We can infer that this happens
because global pruning considers more global contexts than local
pruning.
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7.2 Quantization

Through the quantization for both the Timesformer and VMAE,
the model size reduced to a quarter in int8 qunatization. This is
because the original 32-bit floating point weights are converted
into 8-bit integers. However, the model size remain the same in
float16 qunatization. Some architectures automatically pad or align
float16 data to 32 bits for optimal processing efficiency, which could
explain why there is no substantial change in model size with float16
quantization.

For the inference time for int8 qunatization and float 16 quanti-
zation, we expected it to be faster than original model. The most
common reason for slower inference post-quantization is hardware
compatibility. If the hardware where the model is deployed does not
natively support the quantized data formats, it may need additional
operations to convert data back and forth between supported and
quantized formats, adding overhead. For example, if the hardware
optimally processes 32-bit floats and the model is quantized to 16-
bit floats or 8-bit integers, the hardware might need extra cycles to
handle these formats.

For the accuracy, in int8 qunatization Timesformer model has
better performance than original one. This may because quantizing
weights and activations to int8 can introduce a form of noise to
the model, akin to a regularization effect. This can potentially help
the model generalize better to new data by reducing overfitting.
The limited precision forces the model to focus on more significant
patterns rather than minute, potentially noisy details.

The decrease in accuracy for the VMAE model after int8 quanti-
zation is a common effect due to the reduced numerical precision
inherent in this type of quantization.
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Timesformer 488.19 MB 9.83s 70%
INT8 126.36 MB 14.87s 72.5%
FP16 488.19 MB 10.4s 70.0 %

Fig. 7. Timesformer Quantization
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VMAE 346.20 MB 0.84s 75.0%
INT8 90.65 MB 1.417s 73.0%
FP16 346.20 MB 1.26s 75.0 %

Fig. 8. VMAE Quantization
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8 CONCLUSION

We applied two model compression techniques (Pruning and Quan-
tization) to two state of the art video models. We observe that int8
is the best quantization technique for both the models without im-
pacting accuracy. For pruning, a global pruning performs the best
with minimal reduction in accuracy.

9 FUTURE WORK

e We plan to explore the issues with fp16 quantization. Post
quantization, the serializability of the model storage format
is not allowing for a reduction in model size. We want to
explore this further.

o Extensive testing: We plan to extensively test these com-
pressed models further on all the categories of Kinetics 400
dataset as well as new action categories. This will help in
solidifying the benchmarks.
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