
Benchmarking Distributed Machine Learning Systems
with Large Language Models on Human vs. LLM Text

Corpus

Kishan Teja Repaka
Arizona State University
krepaka@asu.edu

Manikanta Anirudh Bondugula
Arizona State University
mbondugu@asu.edu

Sreekar Sashaank Adibhatla
Arizona State University
sadibha2@asu.edu

Abstract

Large Language Models (LLMs) poses significant challenges in computational
efficiency and resource allocation. This project proposal outlines a comprehen-
sive approach to benchmark and enhance the distributed training mechanisms for
LLMs, utilizing the "Human vs. LLM Text Corpus" dataset from Kaggle. This
dataset, comprised of both human-generated and machine-generated texts, provides
a robust basis for evaluating the effectiveness of various distributed training strate-
gies such as data parallelism, model parallelism, and pipeline parallelism. The
project not only aims to distinguish between human and machine-generated texts
but also seeks to optimize the LLM training process through advanced distributed
learning techniques. By systematically comparing different training approaches,
this study intends to identify optimal strategies that improve training efficiency,
accuracy, and fault tolerance in distributed environments. Preliminary results have
shown promising outcomes, achieving an 80% classification accuracy across 33
labels—32 of which discern AI-generated texts from human-produced texts—and
a 2.1x increase in training time efficiency utilizing parallelism techniques. These
outcomes are expected to provide valuable insights into the scalable training of
LLMs and contribute substantially to both the theoretical and practical aspects of
distributed machine learning systems. This endeavor aims to further our under-
standing of LLM capabilities and limitations, thereby driving advancements in the
broader field of NLP.
Keywords: Distributed Machine Learning, Large Language Models, Data
Parallelism, Model Parallelism, Pipeline Parallelism, Text Classification, Effi-
ciency Optimization, Fault Tolerance, Natural Language Processing

1 Problem Formulation

The rapid advancement in Large Language Models (LLMs) has heralded a new era in natural language
processing (NLP), enabling unprecedented performance across a wide range of tasks. However, this
progress comes with significant challenges, particularly in the training of these models efficiently.
The primary concerns revolve around:

• Computational Resource Requirements: LLMs, due to their vast number of parameters,
require substantial computational resources for training. The cost associated with these
resources limits accessibility and scalability, posing a challenge for research and application
development.

• Training Time: The extensive training periods for LLMs, spanning weeks to months, slow
down the iterative process of model development and experimentation. This delay is a
bottleneck in research cycles and the deployment of NLP solutions.



This project specifically addresses the challenge of benchmarking different distributed training
techniques to enhance the training efficiency of LLMs. By utilizing the "Human vs. LLM Text
Corpus"[1] from Kaggle, the project sets forth to:

• Distinguish between human-generated and machine-generated texts: This task un-
derscores the subtleties in language that differentiate human authors from LLM outputs,
highlighting the nuanced understanding and generation capabilities of these models.

• Optimize Training Processes: Through the exploration of various distributed training strate-
gies, such as data parallelism, model parallelism, and pipeline parallelism, the project aims
to find more efficient ways to train LLMs, reducing computational resource requirements,
training time, and potentially mitigating environmental impact.

• Contribute to the NLP Community: By benchmarking these techniques and sharing
findings, the project seeks to provide valuable insights that can guide future efforts in the
efficient training of LLMs, thereby fostering further advancements in the field.

The overarching goal is to navigate these challenges effectively, opening pathways to more sustainable
and accessible LLM training methodologies that do not compromise on model performance or the
pace of innovation in NLP.

2 Methodology

The methodology of this project is structured to tackle the challenges of improving the training
efficiency of Large Language Models (LLMs) through a systematic, multi-phased approach. This
involves setting a performance baseline and then experimenting with various distributed training
techniques to optimize training processes.

2.1 Dataset

The dataset utilized for this study is sourced from Kaggle, featuring a "Human vs AI Text LLM Text
Corpus" which comprises more than 788,922 rows. The dataset is rich in variety, containing several
columns that capture different aspects of the texts generated by humans and various AI models.

Dataset Overview
The following table describes some of the key columns in the dataset:

Column Name Description
text The text content either generated by humans or AI

source The origin of the text (Human or AI model name)
prompt_id A unique identifier for the prompts used
text_length The length of the text in characters
word_count The number of words in the text

Table 1: Overview of the dataset columns

The dataset also includes 9,905 unique prompts stored in a separate file, detailing the scenarios or
topics on which the texts are based. The distribution of texts is approximately 44% from human
sources and 66% collectively from various AI models.

AI Models in Dataset
A total of 63 different AI models have contributed to the dataset, including well-known models

such as ’Bloom-7B’, ’GPT-4’, ’Flan-T5-Large’, and ’LLaMA-30B’. For brevity, only a selection of
models is mentioned here, reflecting the diversity and range of technology engaged in generating the
dataset.

2.1.1 Dataset Filtering

In preparing the dataset for training with BERT[2] and GPT-2[3] models, specific filtering criteria
were applied due to the models’ tokenization limits. Both models can handle a maximum of 512
tokens per input. To accommodate this limitation, we applied the following filters to the dataset:

2



• Text Length Filter: All entries with a text length exceeding 2,000 characters were removed.
This ensures that the text can be comfortably tokenized within the models’ constraints
without significant information loss.

• Source Adequacy Filter: Only sources contributing at least 1,000 rows were retained. This
threshold was set to ensure that each text source provides enough data points to support
meaningful model training and evaluation.

Filtering Results
After applying the filters, the dataset was condensed to a more focused set of entries. The table

below summarizes the outcome of this filtering process:

Criteria Result
Number of Sources Retained 33

Total Number of Texts 395,712
Table 2: Summary of Dataset Filtering Results

This filtered dataset ensures that the texts are suitable for the tokenization limits of BERT[2] and
GPT-2[3] and that there is sufficient data from each source to allow for robust model training and
performance evaluation.

2.1.2 Training Split

To ensure robust training and evaluation of the BERT and GPT-2 models, the dataset was divided into
distinct sets for training, validation, and testing. This split is critical for assessing the generalizability
of the models to new, unseen data, which is a fundamental aspect of machine learning model
validation.

Data Splitting Strategy
The dataset was initially split into two main subsets: 80% of the data was allocated for training,

while the remaining 20% was set aside for testing. The training set was further subdivided, with
80% used for actual training and 20% for validation. This approach allows for the continuous tuning
of model parameters and helps prevent overfitting. The validation set is used to evaluate the model
during the training phase, adjust hyperparameters, and enhance model performance without biasing
the model towards the test set.

Dataset Split Number of Texts Percentage
Initial Training Set 253,255 64%

Validation Set 63,314 16%
Initial Test Set 79,143 20%

Total 395,712 100%
Table 3: Overview of Dataset Splits

Importance of Data Splitting
Data splitting is a critical step in machine learning. It ensures that the model is tested on unbiased,

unseen data, reflecting its performance in real-world scenarios. This is particularly important in
classification tasks where the ability to generalize beyond the training data is crucial for the model’s
success. The test set, not being exposed to the model during the training phase, serves as a final,
unbiased arbiter of model performance after model development and tuning.

Official Data Split
This structured approach to dividing the dataset constitutes our official data split for the project. It

is designed to balance the needs of model development and validation, ensuring that sufficient data is
available for all stages of model training while securing an unbiased assessment of the final model’s
performance.

3



2.1.3 Data Storage Optimization

The project employs the Hierarchical Data Format version 5 (HDF5) for data storage optimization.
HDF5 is specifically designed to store and organize large and complex data efficiently.

Advantages of HDF5
HDF5 offers a hierarchical structure that is akin to a file system, which allows for organized data

storage in groups and datasets. This format supports extensive data volumes and sizes, enabling
efficient management and scalable fast Input/Output (I/O) operations, crucial for handling large-scale
datasets in machine learning tasks.

Size Reduction Achieved
The original embeddings for the dataset occupied approximately 7 GB of storage space. By

converting these embeddings to HDF5 format, a significant reduction in storage size was achieved,
enhancing the efficiency of data handling and processing. The following table summarizes the size
reduction for training, validation, and test embeddings:

Embeddings Original Size Reduced Size (HDF5)
Train Embeddings ≈ 5.6 GB 952 MB

Validation Embeddings ≈ 1.4 GB 426 MB
Test Embeddings ≈ 1.4 GB 534 MB

Table 4: Overview of Embeddings Size Reduction

Impact of Optimization
The substantial reduction in data size not only conserves storage space but also improves data

processing speeds during model training and evaluation. This optimization is particularly beneficial
in environments where computational resources or storage capacity are limited, ensuring that large
models such as BERT and GPT-2 can be trained more efficiently and economically.

This strategic use of HDF5 thus supports the project’s goals of optimizing data handling and process-
ing, crucial for the efficient training of large language models.

2.2 Training Strategy

Our strategy for evaluating the performance of distributed training techniques on the Human vs. LLM
Text Corpus involved a multi-stage approach, leveraging both pre-trained models and advanced neural
network architectures for classification tasks.

Embedding Generation
Initially, we utilized pre-trained models, specifically GPT-2 and BERT, to generate embeddings for

the text data. These embeddings provide a rich, context-aware representation of the textual input,
capturing the nuances and semantic relationships inherent in the language used by both humans and
LLMs. The choice of GPT-2 and BERT allowed us to harness state-of-the-art language modeling
capabilities, thus ensuring that our input features were of high quality and well-suited for complex
classification tasks.

Classification with Bi-LSTM
Following the generation of embeddings, we employed a Bi-directional Long Short-Term Memory

(Bi-LSTM) network to perform the classification task. The Bi-LSTM[4] architecture was chosen due
to its efficacy in processing sequence data, benefiting from its ability to gather contextual information
from both the past and the future states of the sequence. This is particularly advantageous for
distinguishing subtle differences between human-generated and machine-generated texts, which often
require an understanding of the broader linguistic context.

Training Procedure
The training process was conducted using distributed training methodologies to enhance efficiency

and manage the computational load:

4



• Data Parallelism: The dataset, encoded as embeddings, was distributed across multiple
processing nodes, enabling parallel processing and significantly reducing the overall training
time.

• Gradient Accumulation: Given the extensive computational resources required for han-
dling large embedding vectors and deep neural networks, gradient accumulation techniques
were used to optimize memory usage and stabilize training across smaller batch sizes.

• Synchronous Updates: To maintain consistency across the model’s parameters and ensure
convergence, synchronous updates were implemented during the backpropagation phase,
where gradients from all nodes were aggregated before updating the model weights.

Evaluation Metrics
Model performance was assessed using standard classification metrics such as accuracy, precision,

recall, and F1-score. These metrics provided insights into the model’s ability to accurately classify
texts and helped in fine-tuning the model parameters during the validation phase.

This methodology not only facilitated a thorough evaluation of the distributed training strategies but
also ensured the robustness and accuracy of the classification model in distinguishing between human
and machine-generated texts.

2.3 Baseline Model Training

The initial phase of our project involved establishing a robust performance baseline. This was
achieved by training two well-established models, BERT and GPT-2, on the "Human vs. LLM Text
Corpus" without the application of distributed training techniques. The objectives of this phase were
met as follows:

• Established Performance Benchmarks: We successfully trained BERT and GPT-2 un-
der standard conditions, capturing essential baseline data on accuracy, training time, and
resource utilization. This information served as a critical reference point for evaluating the
effectiveness of the distributed training strategies implemented later in the project.

• Understood Model Behavior: Our analysis revealed how BERT and GPT-2 distinguish
between human-generated and machine-generated texts. These insights provided a deeper
understanding of the models’ inherent strengths and limitations, which guided the optimiza-
tion of our training techniques in subsequent phases.

This baseline training not only set the stage for more complex distributed training experiments but
also ensured that we had a clear benchmark against which to measure the impact of our innovations
in training methodologies.

2.3.1 Introduction to Bi-LSTM

Bi-directional Long Short-Term Memory (Bi-LSTM)[4] networks are an extension of traditional
LSTMs that can improve model performance on sequence data.

A Bi-LSTM network includes two LSTMs: one processes the input sequence from start to end, while
the other processes it from end to start. This allows the network to have both forward and backward
information about the sequence at every time step.

2.3.2 Rationale for Selecting Bi-LSTM as Baseline Model

The selection of a Bidirectional Long Short-Term Memory (Bi-LSTM) network as our baseline model
is motivated by its established efficacy in sequence data analysis. The foundational strengths of a
Bi-LSTM model rest in its architectural ability to process sequences in both forward and backward
directions, offering a more comprehensive analysis of context compared to unidirectional models.
The rationale behind this choice is multifaceted:

• Dual Context Processing: Traditional LSTM networks are constrained to single-direction
processing, limiting their understanding to past context. Bi-LSTMs overcome this limita-
tion by simultaneously considering both past (backward) and future (forward) contextual
information, which is paramount in many sequential tasks such as language modeling.

5



• Superior Performance on Temporal Sequences: In tasks where the sequence’s temporal
dynamics are critical, such as time-series prediction or speech recognition, the bidirectional
approach of Bi-LSTMs enables them to capture patterns that may be missed by unidirectional
models.

• Regularization and Generalization: The incorporation of regularization techniques in
conjunction with the Bi-LSTM model helps in preventing overfitting, ensuring that the
model remains generalizable and performs well on unseen data.

Figure 1: Bi-LSTM Model

Given these advantages, a Bi-LSTM serves as a robust and potent baseline model, providing a solid
foundation for comparing the performance of more complex or specialized architectures that may be
developed in the future.

Aspect Description
Model Type Bi-LSTM (Bidirectional Long Short-Term Memory)
Learning Capabilities Learning long-term dependencies without the long-term de-

pendency problem
Architecture Two LSTM layers processing sequences both forward and

backward
Advantages Enhanced accuracy, richer contextual understanding, and

flexibility in sequence processing tasks
Applications Natural Language Processing (NLP) and Speech Recognition

Table 5: Characteristics of the Bi-LSTM Model

2.3.3 Advantages of Bi-LSTM

Enhanced Accuracy: By capturing information from both past and future contexts, Bi-LSTMs can
make more informed predictions than standard LSTMs.
Richer Contextual Understanding: Bi-LSTMs are particularly useful in tasks that require under-
standing of context in both directions, which is often the case in natural language.
Flexibility: They can be applied to a broad range of sequence prediction problems, from text to time
series data.

2.3.4 Integrating Bi-LSTM into Baseline Model

The chosen baseline model incorporates Bi-LSTM layers to leverage both preceding and succeeding
contexts. Regularization techniques are applied to prevent overfitting, ensuring the model’s generaliz-
ability to unseen data. The model undergoes iterative training with hyperparameter tuning to optimize
performance on the given text corpus.

6



2.4 Distributed Training Experiments

Having established a robust set of baseline metrics, our project investigated various distributed
training methods to enhance the efficiency of training LLMs. The impact of each method on model
performance and scalability was rigorously evaluated:

• Data Parallelism: We distributed the dataset across multiple processors to parallelize the
workload. This approach allowed us to reduce the overall training time substantially while
either maintaining or improving the accuracy of the models.

• Model Parallelism: Considering the demands of larger models and potential hardware
constraints, we partitioned the model across different processors. This partitioning enabled
simultaneous training of model sections, which increased efficiency and facilitated the
training of more sophisticated models.

• Pipeline Parallelism: By implementing a pipeline strategy, we assigned different stages
of the model training process to various processors. This method streamlined the training
workflow, minimized processor idle time, and achieved a balanced distribution of workload
across resources.

These experiments led to insights into the most effective distributed training strategies for LLMs. Our
findings demonstrate potential pathways to reducing training times, optimizing resource allocation,
and ensuring model accuracy and reliability are either preserved or improved.

2.4.1 Experiment Setup

In this phase, we explore the scalability and efficiency of distributed training frameworks. A series of
experiments are designed to test various aspects of distributed training, including data parallelism,
model parallelism, and pipeline parallelism.

2.4.2 Infrastructure

Our experiments leveraged the high-performance computing (HPC) resources of Arizona State
University’s cluster, known as Sol. The hardware and software configurations used are summarized
in the table below, which outlines the specific capabilities of the nodes utilized for our distributed
training experiments.

Resource Specification
CPU Cores 8
RAM 160 GB
GPU Model NVIDIA A100 – SXM4
GPU Count 2
GPU Memory 80 GB per GPU
Network Configuration High-speed interconnect

Table 6: Hardware Specifications of ASU’s HPC Cluster Sol

This hardware setup was specifically selected for its high computational capabilities and exten-
sive memory, essential for handling the complex computations and large datasets characteristic of
distributed machine learning tasks.

2.4.3 Software Frameworks

The software environment for our distributed training experiments was designed to maximize ef-
ficiency and leverage the full potential of our hardware setup. Below is a table summarizing the
primary software frameworks and libraries employed, each chosen for its specific role in facilitating
distributed training techniques.

7



Table 7: Software Specifications for Distributed Training

Software Component Function and Description
Python Version 3.12.2: High-level programming language used for imple-

menting machine learning algorithms.
PyTorch Version 2.2.2+cu121: An open-source machine learning library

extensively used for applications such as computer vision and
natural language processing.

CUDA Version 12.1: A parallel computing platform and application
programming interface model created by NVIDIA, essential for
deep learning neural network acceleration.

DistributedDataParallel
(DDP)[5]

Used for Data Parallelism: Facilitates the distribution of data and
parallel execution across multiple GPUs, significantly enhancing
training speed.

DeepSpeed[6] Used for Model Parallelism: Optimizes model training across mul-
tiple GPUs by partitioning the model, reducing memory overhead
and improving scalability.

Gpipe [7] Used for Pipeline Parallelism: Implements a pipelining technique
for splitting a model into different stages that are processed in
parallel across GPUs, minimizing idle time.

These tools were selected based on their proven capabilities to enhance the distributed training process.
DistributedDataParallel (DDP)[5]streamlines data parallelism, DeepSpeed [6]facilitates efficient
model parallelism, and Gpipe [7]supports effective pipeline parallelism. These implementations
ensure that our project efficiently utilizes computational resources, thereby optimizing both the speed
and scalability of our model training.

2.4.4 Data Parallelism

Data parallelism is a technique used to scale deep learning across multiple computing nodes by
distributing the input data. Each node processes a subset of the data while operating a replica of the
entire model. Our implementation utilizes PyTorch’s DistributedDataParallel (DDP) library, which is
designed to enhance and simplify the parallelization of data across multiple GPUs.

Figure 2: Illustration of Data Parallelism using DistributedDataParallel

How DistributedDataParallel Works
DDP wraps a model during its instantiation, employing multiple processes to operate in parallel.

Each process manages its own model replica and optimizes gradient computations locally on a subset
of the total dataset. The key steps involved in the DDP workflow are:

8



1. Data Distribution: The dataset is divided into almost equal parts, and each part is fed to a
different GPU.

2. Local Gradient Computation: Each GPU computes the gradients based on its batch of
data independently.

3. Gradient Synchronization: Once all replicas finish gradient computation, DDP aggregates
these gradients across all processes. This ensures that each replica stays in sync, as all
models receive the same updated weights after every training step.

Key Features of DDP

• Synchronous Updates: DDP performs synchronous parameter updates, which typically
results in better model convergence.

• Overlap of Computation and Communication: DDP can overlap communication with
the backward pass of the neural network, improving training efficiency.

• Scalability: It scales efficiently across many GPUs and is optimized to work well on a
variety of network architectures.

DDP Implementation for Bi-LSTM Efficiency
For our project, DDP was specifically tuned to optimize the training of a Bi-LSTM model used

for classifying the Human vs. LLM Text Corpus. The bi-directional nature of Bi-LSTM requires
careful synchronization of hidden states at each time step across different GPUs. DDP facilitated
this by ensuring that all model replicas are updated uniformly, which is critical for maintaining the
sequence integrity and contextual understanding necessary for accurate text classification.

These capabilities of DDP not only reduced the computational load on individual GPUs but also
significantly shortened the training time while maintaining high model accuracy.

2.4.5 Model Parallelism

Model parallelism is a technique used to distribute the components of a neural network model across
multiple computational resources, such as GPUs or different machines. This method is particularly
useful for training larger models that exceed the memory capacity of a single GPU.

Figure 3: General illustration of Model Parallelism

DeepSpeed Implementation
We employed DeepSpeed, an advanced optimization library developed by Microsoft, to facilitate

efficient and effective model parallelism. DeepSpeed enables the distribution of different layers of a
model across multiple GPUs, allowing each layer to reside on the most suitable hardware accelerator.

9



This capability is crucial for handling models whose size exceeds the memory limits of individual
GPUs.

Key Features of DeepSpeed

• Smart Partitioning with ZeRO: Zero Redundancy Optimizer (ZeRO) significantly reduces
memory consumption by intelligently partitioning model states across the available GPUs,
minimizing redundancy.

• Dynamic Micro-Batching: This feature dynamically adjusts the micro-batch sizes to
optimize computational efficiency and ensure smooth data processing across GPUs.

• Mixed-Precision Training: DeepSpeed supports mixed-precision (FP16) training, which
accelerates computations and reduces memory usage without compromising model accuracy.

Figure 4: Screenshot of DeepSpeed Configuration

Configuration and Optimization
For our specific needs, DeepSpeed was configured to maximize both efficiency and performance:

• Batch Sizes: The training batch size was set to 64, with a micro-batch size of 32 per GPU.
This configuration helps fit the model and data comfortably within each GPU’s memory
limits.

• Optimizer and Learning Rate Scheduler: We utilized the Adam optimizer with a learning
rate of 0.001, coupled with a WarmupLR scheduler that gradually ramps up the learning
rate, enhancing model stability and improving convergence rates.

• ZeRO-2 Optimization: Enabled ZeRO-2 to distribute model states effectively across GPUs
while offloading optimizer states to the CPU, further reducing GPU memory demands.

10



These strategic configurations and the utilization of advanced features like ZeRO have significantly
enhanced our ability to train complex models more efficiently, showcasing the power of modern
distributed training frameworks.

2.4.6 Pipeline Parallelism

Pipeline parallelism is a sophisticated method for training neural networks by splitting the model
into multiple partitions or stages, each executed on different GPUs. This approach leverages the
GPipe library, a system developed by Google and implemented in PyTorch, designed to optimize the
training process by minimizing idle times and maximizing computational efficiency.

Figure 5: Illustration of Pipeline Parallelism with GPipe

GPipe Implementation
GPipe facilitates the division of a model into stages that are distributed across multiple GPUs.

Each stage processes a different portion of the model, allowing for parallel computation. The stages
are connected in a pipeline fashion, where the output of one stage serves as the input for the next,
thereby maintaining a continuous flow of data through the model.

Key Features of GPipe

• Overlapping of Computation and Communication: GPipe optimizes the training process
by allowing computation and data transfer to occur simultaneously, reducing the overall
training time.

• Micro-batching Technique: This feature divides a larger batch into smaller micro-batches,
which are processed independently in different stages. This improves GPU utilization and
allows for more efficient training.

• Supports Multi-layer Model Splitting: GPipe can handle sequential multi-layer models,
distributing them across multiple GPUs effectively.

Balance Chunk
Size

GPU 1 Uti-
lization

GPU 2 Uti-
lization

Avg Memory
per GPU (GB)

Training Time
per Epoch (Min-
utes)

[2, 2] 16 20% 20% 20 35
[3, 1] 16 25% 15% 22 30
[1, 3] 16 15% 25% 22 30
[2, 2] 32 22% 22% 21 25
[2, 2] 8 18% 18% 19 40

Table 8: Impact of Balance and Chunk Size on Training Efficiency

Optimizing Balance and Chunks
The performance of pipeline parallelism heavily depends on how model layers are balanced across

GPUs and how input batches are chunked during training. The right balance and chunk size are
crucial to avoid bottlenecks:

11



• Balance: Ensuring an even distribution of model layers across the pipeline stages to prevent
any GPU from becoming a bottleneck due to underutilization or overload.

• Chunks: Adjusting the number of micro-batches helps in reducing idle times across GPUs,
enhancing the overall efficiency of the system.

Configuration Impact
Different configurations of balance and chunk sizes were experimented with to find the optimal

setup for minimizing training times and maximizing GPU utilization:

The results highlight the significance of carefully configuring balance and chunk sizes, as these
parameters directly influence the efficiency and effectiveness of the training process using pipeline
parallelism.

3 Evaluation and Results

This section outlines the outcomes of our distributed training experiments, focusing on the perfor-
mance of the machine learning models and the efficiency of the system during these processes.

3.1 Machine Learning Metrics

We utilized several key metrics to evaluate the performance of our models in classifying texts from
the Human vs. LLM Text Corpus:

• Accuracy: The proportion of correct predictions (both true positives and true negatives)
among the total number of cases examined. This metric indicates the overall effectiveness
of the model in classifying the data accurately.

• F1 Score: The harmonic mean of precision and recall, providing a balanced measure of the
model’s accuracy in identifying relevant instances.

• Loss: We monitored the training and validation loss throughout the epochs to understand
how well the model was learning and generalizing. A decrease in training loss over epochs
indicates that the model is effectively learning the training data, whereas validation loss
provides insight into how well the model generalizes to unseen data.

These metrics are critical for assessing how well the model performs in distinguishing between
human-generated and machine-generated texts.

3.1.1 Evaluation of Training and Validation Losses

This section evaluates the training and validation losses for models trained with BERT and GPT-2
embeddings under various distributed training configurations.

Baseline LSTM Training
Both BERT and GPT-2 embeddings were used to train a baseline LSTM model. Here are the

results:

• BERT demonstrated rapid initial learning rates, significantly reducing training loss early in
the training process.

• GPT-2 exhibited steadier convergence, showing less fluctuation in training and validation
losses, which indicates better generalization.

Model Parallelism LSTM Training
Model parallelism was applied to train the LSTM model with the following observations:

• With BERT, the model exhibited some initial overhead which improved over time as system
optimizations were applied.

• GPT-2 showed less disparity between training and validation losses, benefiting from the
reduced complexity in managing model states across GPUs.

12



Data Parallelism LSTM Training
Data parallelism was implemented with these outcomes:

• BERT achieved rapid advancements in training due to effective utilization of resources
across multiple GPUs. However, this came at the cost of higher validation losses, indicating
possible overfitting.

• GPT-2 demonstrated more consistent performance across both training and validation,
making it ideal for large-scale training scenarios.

Pipeline Parallelism LSTM Training
Pipeline parallelism resulted in varied performance metrics:

• BERT showed fluctuating validation results, a reflection of the complexities involved in
managing pipeline stages effectively. Yet, training losses were significantly reduced.

• GPT-2 maintained a better balance between training efficiency and validation performance,
although there were some challenges during the initial setup.

GPT-2 Loss Metrics
The following figures show the training and validation loss graphs for the GPT-2 model:

(a) Training Loss (b) Validation Loss

Figure 6: GPT-2 Training and Validation Losses

BERT Loss Metrics
Similarly, the following figures display the training and validation loss graphs for the BERT model:

(a) Training Loss (b) Validation Loss

Figure 7: BERT Training and Validation Losses

Discussion
This section synthesizes the findings from the detailed evaluations of training and validation

losses across different distributed training configurations. The diverse responses of BERT and
GPT-2 embeddings under each configuration provide valuable insights into their adaptability and
performance in complex distributed environments.

Summary
The detailed assessment of training and validation losses under various distributed training strate-

gies has highlighted the strengths and limitations of using BERT and GPT-2 embeddings in an
LSTM framework. These findings will guide future implementations and optimizations in distributed
machine learning architectures.

13



3.1.2 Accuracy Metrics

This subsection presents an analysis of the accuracy metrics obtained from training LSTM models
using BERT and GPT-2 embeddings under various distributed training paradigms, namely, baseline,
model parallelism, data parallelism, and pipeline parallelism.

GPT-2 Accuracy Analysis
GPT-2 models generally showed more consistent accuracy levels across different training configu-

rations, indicating better generalization capabilities. This can be attributed to the simpler and more
robust embedding distribution mechanisms utilized by GPT-2, which seem to be less sensitive to
changes in model architecture and distribution strategy.

Figure 8: Comparison of GPT-2 Accuracies Across Different Parallelisms

BERT Accuracy Analysis
In contrast, BERT models demonstrated rapid learning capabilities, especially in initial training

phases. However, this rapid acquisition of learning also poses risks of overfitting, requiring care-
ful tuning of parameters and potentially more sophisticated regularization strategies to maintain
generalization.

Figure 9: Comparison of BERT Accuracies Across Different Parallelisms

Comparative Insights
Interestingly, when comparing the different LSTM models with various distribution mechanisms

(model parallelism, data parallelism, pipeline parallelism), it was observed that all configurations
maintained similar accuracy ranges. This suggests that the applied distribution strategies effectively
manage computational loads without degrading model performance.

• Maximum Accuracy Achieved: GPT-2 reached a maximum accuracy of 77%, while
BERT-3 peaked at 80%. These figures underscore the effectiveness of each embedding

14



in leveraging the distributed frameworks to enhance learning without compromising the
accuracy potential of the models.

• Implications for Model Selection: The choice between GPT-2 and BERT may thus
depend on specific application requirements—GPT-2 for applications demanding robust
generalization and BERT for scenarios where rapid learning from limited data is critical.

Discussion
The analysis reveals that while both models perform well under distributed conditions, the choice

of model and parallelism strategy should be aligned with specific performance goals and training
conditions. These findings provide valuable insights for deploying large-scale neural network models
in real-world applications, especially in environments where resource distribution and computational
efficiency are critical.

Summary
The comprehensive assessment of accuracy across different distributed training strategies using

GPT-2 and BERT embeddings has highlighted critical insights into the scalability and adaptability
of LSTM models. These results will guide further optimizations and strategic decisions in the
development of distributed learning systems.

3.2 System Performance Metrics

To gauge the efficiency of our training process, we measured various system performance aspects:

• GPU Utilization: The average percentage of GPU processing capacity utilized during
model training. High utilization rates can indicate efficient use of the hardware.

• Memory Footprint: The average amount of GPU memory used during training, reflecting
the efficiency of the model in managing computational resources.

• Training Time: The duration taken to complete one epoch of training, providing insight
into the speed of the training process under various configurations.

These metrics help us understand the resource efficiency and operational cost of our training strategies.

3.2.1 GPU Consumption Comparison

This subsection details the GPU consumption patterns observed for both GPT-2 and BERT models
under various parallelism configurations, comparing these to a baseline without parallelism. The
discussion highlights the efficiency and resource management capabilities of each parallelism strategy.

GPU Consumption
Both the models displayed different levels of GPU utilization depending on the type of parallelism

applied:

• Data Parallelism typically showed the highest GPU consumption due to the model replica-
tion across each GPU, maximizing utilization.

• Model Parallelism resulted in moderate consumption, as the model was split across GPUs,
reducing load but increasing communication overhead.

• Pipeline Parallelism had the lowest consumption, managing resources more efficiently but
initially suffering from pipeline filling delays and intermittent idling.

GPT-2 GPU Consumption
For GPT-2, the GPU consumption patterns were as follows:

• Baseline consumption without parallelism was approximately 50%.
• Data Parallelism reduced average consumption to 30% across two GPUs.
• Model Parallelism decreased consumption further to 23% across two GPUs.
• Pipeline Parallelism offered the most significant reduction, with an average consumption

of 17% across two GPUs.

15



Figure 10: GPT-2 GPU Consumption without Parallelism

Figure 11: GPT-2 GPU Consumption with Various Parallelisms

BERT GPU Consumption
For BERT, the GPU consumption patterns were as follows:

• Baseline consumption without parallelism was approximately 60%.

• Data Parallelism reduced average consumption to 40% across two GPUs.

• Model Parallelism decreased consumption further to 30% across two GPUs.

• Pipeline Parallelism offered the most significant reduction, with an average consumption
of 20% across two GPUs.

Figure 12: BERT GPU Consumption without Parallelism

Discussion
The data clearly illustrates how each model responds differently to the applied parallelism

techniques in terms of GPU consumption. While GPT-2 tends to show more consistent GPU usage
across different strategies, BERT exhibits significant reductions in GPU consumption with more
sophisticated parallelism techniques, underscoring the importance of choosing the right strategy
based on the model characteristics and training requirements.

16



Figure 13: BERT GPU Consumption with Various Parallelisms

Summary
The comparative analysis of GPT-2 and BERT under various distributed training settings not only

demonstrates the potential of these methods to reduce GPU consumption but also highlights their
impact on the training process efficiency and cost. Such insights are crucial for optimizing large-scale
machine learning deployments in environments where resource efficiency is paramount.

3.2.2 Memory Consumption Comparison

This subsection explores the memory consumption patterns for both GPT-2 and BERT models under
different parallelism configurations, comparing these to a baseline without parallelism. This analysis
highlights how each parallelism strategy affects memory efficiency.

Memory Footprint Insights
Memory usage varied significantly across the different parallelism strategies:

• Highest Footprint: Data Parallelism showed the highest memory footprint due to each GPU
maintaining a complete copy of the model, leading to increased overall memory demands.

• Moderate Usage: Model Parallelism managed a more moderate memory footprint by
distributing different parts of the model across several GPUs.

• Optimized Footprint: Pipeline Parallelism exhibited the lowest memory footprint by
efficiently segmenting the model to fit within each GPU’s memory constraints, optimizing
resource utilization.

GPT-2 Memory Consumption
For GPT-2, the memory consumption patterns were as follows:

• Baseline: The baseline setup used approximately 55 GB.

• Data Parallelism: This configuration reduced memory usage to about 25 GB per GPU.

• Model Parallelism: Memory consumption decreased further to around 20 GB per GPU.

• Pipeline Parallelism: Offered the most significant reduction, with an average consumption
of 15 GB per GPU.

BERT Memory Consumption
For BERT, the memory consumption patterns were as follows:

• Baseline: The baseline setup used approximately 70 GB.

• Data Parallelism: Reduced memory usage to about 45 GB per GPU.

• Model Parallelism: Further decreased to around 35 GB per GPU.

• Pipeline Parallelism: Showed the lowest memory usage, with about 20 GB per GPU.

17



Figure 14: GPT-2 Memory Consumption under Various Parallelisms

Figure 15: GPT-2 Memory Consumption under Various Parallelisms

Discussion
The data clearly demonstrates how memory consumption varies significantly with different

parallelism strategies. GPT-2 and BERT both show a consistent trend of reduced memory footprint
with more sophisticated parallelism techniques. This underscores the importance of selecting the
right strategy based on the memory capacity available and the specific requirements of the training
task.

Summary
The comparative analysis of memory consumption for GPT-2 and BERT under various distributed

training settings not only demonstrates the potential of these methods to manage memory use
effectively but also highlights their impact on the overall efficiency of the training process. These
insights are crucial for deploying large-scale machine learning models in environments where memory
efficiency is paramount.

3.2.3 Training Times Comparison

This subsection evaluates the training times for GPT-2 and BERT models under different parallelism
configurations, assessing how each strategy affects the duration needed to complete one epoch of
training.

Training Time Efficiency
Training time is a critical metric in evaluating the efficiency of distributed training strategies. The

results for each model and configuration were as follows:

GPT-2 Training Times

• Baseline: The baseline training time for GPT-2 was approximately 80 minutes per epoch.

18



• Data Parallelism: This strategy significantly reduced the training time to 23 minutes per
epoch, demonstrating a marked improvement in efficiency.

• Model Parallelism: The training time under model parallelism was about 33 minutes per
epoch. While faster than the baseline, it was less efficient compared to data parallelism,
primarily due to synchronization overheads.

• Pipeline Parallelism: Achieved the most substantial reduction in training time, lowering it
to 17 minutes per epoch, which indicates highly effective load balancing and utilization.

Figure 16: GPT-2 Training Times under Various Parallelisms

Figure 17: BERT Training Times under Various Parallelisms

BERT Training Times

• Baseline: BERT’s baseline training time was about 100 minutes per epoch.
• Data Parallelism: Reduced the training time to 27 minutes per epoch, reflecting significant

time savings.
• Model Parallelism: This strategy reduced the training time to 40 minutes per epoch. While

it provided a reduction compared to the baseline, it was not as effective as other strategies
due to greater complexity in managing model parts across GPUs.

• Pipeline Parallelism: Brought the training time down to 22 minutes per epoch, proving to
be the most efficient in terms of time, even though it required initial setup time.

19



Discussion
The data illustrates significant disparities in training times across different parallelism techniques

for both GPT-2 and BERT models. Data Parallelism and Pipeline Parallelism consistently showed
the most substantial reductions in training time. While Model Parallelism offers certain advantages
in terms of memory management, its impact on training duration is less favorable due to the
complexities of synchronization and communication overhead among distributed model components.

Summary
Comparative analysis of training times highlights the effectiveness of Pipeline Parallelism in

reducing training durations, especially notable in BERT’s training regimen. These findings are crucial
for optimizing training strategies in environments where reducing training time is imperative without
sacrificing model performance or resource efficiency.

4 Difficulties Encountered

Resource Limitations
Access was restricted to only two A100 GPUs, which imposed limitations on the computational
capacity and parallel processing abilities, impacting the efficiency and speed of the model training
phase.

Extended Training Times
The BERT sequence classification and GPT-2 classification models required approximately 2 hours
per epoch for training. This extended duration for training epochs presented a challenge in terms of
time management and resource allocation.

Capped Accuracy
A maximum accuracy of 80% was achieved, which was influenced by the constraints of the model
versions used. The limited features and capabilities of the specific versions may have prevented the
attainment of higher accuracy levels.

Limited Access to Advanced Models
Enhanced results could potentially be achieved with public access to more advanced models such as
GPT-3[8] and other advanced embedding generation APIs. However, such access was not available,
which may have limited the overall performance and outcomes of the project.

5 Conclusion

This project embarked on the ambitious task of benchmarking distributed machine learning systems
using Large Language Models (LLMs) within the specific context of text classification, distinguishing
between human-generated and AI-generated texts. The primary goal was to evaluate and optimize the
distributed training processes that are pivotal in advancing the capabilities and efficiency of LLMs.

Throughout the course of this study, several key findings were elucidated:

• The application of distributed training techniques, such as data, model, and pipeline paral-
lelism, has demonstrated significant improvements in training efficiency and model scalabil-
ity.

• Each parallelism strategy presented distinct benefits and challenges, underscoring the impor-
tance of aligning model architecture and training methodology with the specific goals and
constraints of the task at hand.

• While resource limitations and extended training times were notable challenges, they also
provided critical insights into areas for improvement and optimization in future research.

Our experiments yielded promising results, achieving up to an 80% classification accuracy rate and
unveiling potential reductions in training times and computational resource usage. These outcomes
not only highlight the feasibility of employing advanced distributed training strategies in resource-
constrained environments but also open up new avenues for future exploration and development.

20



5.1 Future Work

Building on the foundation laid by this study, the following avenues present promising directions for
future work:

• Advanced Model Integration: To further improve embedding quality and classification
performance, we plan to incorporate GPT-3, GPT-3.5, T5[9], and other state-of-the-art
transformer models. These advanced models are expected to offer enhanced embedding
generation capabilities and finer classification nuances.

• Distributed Training Expansion: A transition from single-node to multi-node execution
will be investigated to significantly improve computational efficiency. Multi-node archi-
tectures are anticipated to accelerate training processes and enable the handling of larger
datasets and model architectures.

• Dynamic Learning Rate Adjustments: We aim to explore and implement adaptive learning
rate algorithms that dynamically adjust the learning rate during training. This approach is
hypothesized to optimize the training process, leading to faster convergence and improved
model performance.

• Expansion of LLMs: Experiments will be extended to include the latest and more complex
LLMs, with the goal of broadening the research scope and enhancing the overall capabilities
of our machine learning systems. This expansion is expected to yield insights into the
scalability and performance limits of current LLM architectures.

These forward-looking objectives underscore our commitment to advancing the field of NLP by
harnessing the latest developments in LLMs and distributed machine learning technologies. We antic-
ipate that these efforts will contribute significantly to the scalability and accessibility of sophisticated
NLP applications.

In conclusion, the project’s findings contribute valuable knowledge to the field of distributed machine
learning, with specific applications in training Large Language Models. By pushing the boundaries
of what is possible in distributed training, we pave the way for more sophisticated, efficient, and
accessible NLP technologies in the future.

6 Literature Survey

The investigation into distributed machine learning, the capabilities of Large Language Models
(LLMs) in text classification, and methodologies for enhancing machine learning efficiency is built
upon a comprehensive literature survey. This survey acknowledges both the foundational theories
and the latest innovations that underpin and catalyze our project’s objectives.

6.1 Advancements in Distributed Machine Learning

Our project draws from seminal works in distributed machine learning, especially those that optimize
the training of LLMs through cutting-edge parallelism techniques. Notable contributions include
Shoeybi et al. [10], who introduced Megatron-LM[10] to train large-scale language models with
model parallelism on GPU clusters efficiently. Furthermore, Rajbhandari et al. [11] proposed ZeRO, a
novel memory optimization technique enabling the training of models with over a trillion parameters,
which significantly influences our approach to distributed training.

6.2 Emerging Trends in LLMs for Text Classification

In text classification, our project particularly emphasizes the ability to differentiate human from
AI-generated content. The work by Brown et al. [8], showcasing GPT-3’s ability for few-shot learning,
remains a pivotal reference. It informs our understanding of LLMs’ potential to classify text with
scant training data. Meanwhile, Liu et al. [12] have made strides with RoBERTa, which refines
BERT’s pretraining methods, enhancing performance on classification tasks—a technique that our
project leverages.

21



6.3 Efficiency and Environmental Impact of Machine Learning

The research community has made concerted efforts to improve the efficiency of ML models.
Dynamic learning rate adjustments are explored to optimize training processes effectively, as these
can significantly affect convergence and model performance. Notably, Clark et al. [13] introduced
ELECTRA, an approach that trains text models with greater sample efficiency, which has been an
inspiration for our project’s focus on efficiency.

6.4 Future Directions in LLMs and Distributed Training

The continuation of our literature survey encompasses recent breakthroughs and future-forward studies
in LLMs and distributed training. Recent papers expounding upon the use of newer models like
GPT-3.5 and T5 for embedding generation and classification tasks indicate a trend towards ever more
powerful and nuanced language understanding capabilities. Additionally, studies investigating the
shift from single-node to multi-node execution models provide a roadmap for scaling computational
efficiency in distributed environments. The exploration of LLM extensions, including novel and more
intricate models, forecasts an era of accelerated innovation and broadened research horizons in NLP.

These contemporary studies and their findings not only validate our research direction but also serve
as a beacon for our future work, heralding advancements in both the theoretical framework and
practical applications of distributed machine learning and LLMs.

References
[1] Zachary Grinberg. Human vs. llm text corpus. https://www.kaggle.com/datasets/

starblasters8/human-vs-llm-text-corpus/data, 2023.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT, pages 4171–4186, 2019.

[3] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

[4] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional lstm-crf models for sequence tagging. arXiv
preprint arXiv:1508.01991, 2015.

[5] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,
Jeff Smith, Brian Vaughan, Pritam Damania, et al. Pytorch distributed: Experiences on
accelerating data parallel training. arXiv preprint arXiv:2006.15704, 2020.

[6] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. Deepspeed: System
optimizations enable training deep learning models with over 100 billion parameters. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pages 3505–3506, 2020.

[7] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. Advances in neural information processing systems,
32, 2019.

[8] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

[9] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020.

[10] Mohammad Shoeybi, Mostofa Ali Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and
Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using model
parallelism. In arXiv preprint arXiv:1909.08053, 2019.

22

https://www.kaggle.com/datasets/starblasters8/human-vs-llm-text-corpus/data
https://www.kaggle.com/datasets/starblasters8/human-vs-llm-text-corpus/data


[11] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimiza-
tions toward training trillion parameter models. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–16. IEEE, 2020.

[12] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

[13] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Manning. Electra: Pre-training
text encoders as discriminators rather than generators. In Proceedings of the 8th International
Conference on Learning Representations (ICLR), 2020.

23


	Problem Formulation
	Methodology
	Dataset
	Dataset Filtering
	Training Split
	Data Storage Optimization

	Training Strategy
	Baseline Model Training
	Introduction to Bi-LSTM
	Rationale for Selecting Bi-LSTM as Baseline Model
	Advantages of Bi-LSTM
	Integrating Bi-LSTM into Baseline Model

	Distributed Training Experiments
	Experiment Setup
	Infrastructure
	Software Frameworks
	Data Parallelism
	Model Parallelism
	Pipeline Parallelism


	Evaluation and Results
	Machine Learning Metrics
	Evaluation of Training and Validation Losses
	Accuracy Metrics

	System Performance Metrics
	GPU Consumption Comparison
	Memory Consumption Comparison
	Training Times Comparison


	Difficulties Encountered
	Conclusion
	Future Work

	Literature Survey
	Advancements in Distributed Machine Learning
	Emerging Trends in LLMs for Text Classification
	Efficiency and Environmental Impact of Machine Learning
	Future Directions in LLMs and Distributed Training


