
Comparative Analysis of Standard Image Classification Model
Training Techniques with FSDP

Aditya Mohan
Arizona State University
Tempe, Arizona, USA
amohan62@asu.edu

Baibhav Phukan
Arizona State University
Tempe, Arizona, USA
bphukan@asu.edu

Nagaraju Machavarapu
Arizona State University
Tempe, Arizona, USA
nmachav1@asu.edu

ABSTRACT
As the demand for larger AI models grows, training such models
becomes increasingly challenging due to computational constraints.
PyTorch’s Fully Sharded Data Parallel (FSDP) presents a promising
solution by distributing model parameters across multiple GPUs,
thereby enabling the training of massive models that wouldn’t fit
on a single GPU. This study provides a comprehensive comparative
analysis of standard image classification model training techniques
with FSDP. The primary objective is to assess the effectiveness
of FSDP in enhancing the training process for large-scale models.
The study compares FSDP against traditional techniques using
MobileNetV2 and ResNet on the CIFAR-10 dataset, exploring its
scalability, efficiency, and practical implications. Through these
experiments and analysis, this study provides insights into the
strengths andweaknesses of FSDP, contributing to the advancement
of distributed training frameworks.

CCS CONCEPTS
• Machine Learning → Image Classification; • PyTorch → Fully
Sharded Data Parallel.

KEYWORDS
FSDP, GPU, MobileNet, ResNet, CIFAR-10, Machine Learning, Neu-
ral Networks

1 INTRODUCTION
According to recent studies, larger models have been shown to
enhance AI performance, with parameters exploding 10,000-fold in
just 3 years. However, training such huge models is difficult due
to the massive computing power and complex software needed.
PyTorch, a popular AI framework, is building tools to address this
challenge. Notably, "Distributed data parallelism" is a common
technique, but it limits models to single GPUs. Newer methods like
DeepSpeed ZeRO and FairScale’s Sharded Data Parallel break this
barrier by splitting the model across multiple GPUs, simplifying
the training process for massive AI models.

PyTorch’s Fully Sharded Data Parallel (FSDP) is an advanced
technique for training extremely large AI models that would not
fit on a single GPU. FSDP cuts the model into smaller pieces called
"shards" and spreads them across multiple GPUs. Here is how it
works:

Sharding: FSDP flattens and splits the model’s parameters, gradi-
ents, and optimizer states into manageable chunks.

Distributed training: Each GPU only works on its assigned shards,
reducing memory usage per device.

Communication: GPUs talk to each other to exchange informa-
tion needed for calculations and updates.

Assembly: FSDP automatically combines the results from all
GPUs to obtain the final model updates.

To address the challenges posed by training increasingly larger
AI models, this study proposes to conduct a comprehensive com-
parative analysis of standard image classification model training
techniques with PyTorch’s Fully Sharded Data Parallel (FSDP). The
primary objective is to assess the effectiveness of FSDP in enhanc-
ing the training process for large-scale models that wouldn’t fit on
a single GPU. This analysis is intriguing for several reasons:

Scalability: As AI models continue to grow in size, scalability
becomes a critical concern. Techniques like FSDP offer a solution
by distributing the computational load across multiple GPUs, po-
tentially enabling the training of even larger models.

Efficiency: By reducing memory usage per device and optimizing
communication between GPUs, FSDP aims to make the training of
massive models more efficient, thereby lowering the computational
resources required.

Practical Implications: Understanding the practical implications
of adopting FSDP for large-scale model training can influence
decision-making processes regarding framework selection, infras-
tructure requirements, and training methodologies.

Comparative Analysis: Conducting a comparative analysis allows
for a systematic evaluation of FSDP against existing techniques.
By benchmarking FSDP against traditional methods, there is scope
to identify its strengths, weaknesses, and potential areas for im-
provement, thereby contributing to the advancement of distributed
training frameworks.

2 RELATEDWORK
In the challenge of training ever-larger AI models, PyTorch’s Fully
Sharded Data Parallel (FSDP) stands tall amidst a landscape of
data parallelism techniques. While traditional Data Parallelism (DP)
excels in its simplicity and robustness [6], its single-GPU limitation
hinders its application to larger models. Gradient Sharded Data
Parallelism (GSDP) [4] attempts to overcome this hurdle by splitting
gradients across GPUs, but parameter sharding remains a challenge.
Here, FSDP shines by fragmenting both parameters and gradients,
allowing near-linear scalability observed in research [3].

Compared tomodel parallelism approaches like DeepSpeed ZeRO
[5], FSDP offers a hybrid advantage. While ZeRO achieves impres-
sive memory reduction, it can introduce complex communication
patterns and overhead [2]. FSDP strikes a balance by retaining data
parallelism’s efficient communication while enabling the training
of models larger than ZeRO can handle.

However, FSDP is a fairly new contender still under active de-
velopment. Its integration with other techniques like pipeline par-
allelism requires further exploration [1]. Additionally, its nascent



Aditya Mohan, Baibhav Phukan, and Nagaraju Machavarapu

Figure 1: The FSDP pipeline

stage necessitates careful configuration and coding expertise for
optimal performance [3].

Despite these considerations, FSDP’s potential is undeniable.
Studies showcase its success in training LLMs like Megatron-Turing
NLG [7], demonstrating its effectiveness in pushing the boundaries
of NLP tasks. Investigations into its applicability in other domains
like computer vision are underway, hinting at its broader impact.

3 EXPERIMENTAL SETUP
3.1 Method
This study implements and compares FSDP against traditional train-
ing techniques on a standard image classification task. It’s focused
on twowidely known pre-trained models: MobileNetV2 and ResNet,
both of which are available in the torchvision library. These models
were chosen to explore the impact of FSDP across a spectrum of
model complexities.

These models were chosen specifically because of their contrast-
ing nature - MobileNetV2 is a lightweight architecture and ResNet is
known for its ability to handle deep architectures. A broad spectrum
of architectures would lead to a more robust evaluation.

MobileNetV2 is a lightweight convolutional neural network de-
signed for efficiency on mobile devices and resource-constrained
environments. It balances accuracy with speed by using depthwise
separable convolutions and linear bottleneck layers.

ResNet, on the other hand, is a powerful convolutional neural
network known for its accuracy and ability to handle deep architec-
tures. It utilizes skip connections to address the vanishing gradient
problem, allowing for better information flow and training deeper
networks.

3.2 Data
To conduct these experiments, the CIFAR-10 dataset is used as it is
a widely used benchmark dataset for image classification tasks. It

consists of 60,000 32*32 color images, with 6000 images per class.
The dataset is split into 50,000 training images and 10,000 test
images. The dataset covers a diverse range of objects and animals
commonly found in everyday environments, making it suitable for
our analysis. CIFAR-10 is a sweet spot for both MobileNetV2 and
ResNet: its 32x32 images are perfect for their efficient designs, its 10
classes offer a good balance of learning challenge andmanageability,
and its widespread use allows for easy performance comparison.

3.3 Environment Setup
In this study, the proposed experiments were performed by lever-
aging ASU Research Computing Supercomputer Sol’s multi-GPU
availability and computational power. PyTorch’s Fully Sharded
Data Parallel was integrated into the training pipeline for both
MobileNetV2 and ResNet models. This involved sharding the model
parameters, gradients, and optimizer states, enabling distributed
training across multiple GPUs.

The experiments included training bothmodels with andwithout
using FSDP. For the baseline, traditional model training techniques
using a single GPU instance were employed. The key parameters
such as training speed, memory usage, time taken, per-epoch time
and accuracy were closely monitored and compared between the
two approaches.

4 RESULTS
This comprehensive study provides various insights into the per-
formance and impact of FSDP on training large models, specifically
MobileNetV2 and ResNet on CIFAR-10 dataset. The Fully Sharded
Data Parallelism (FSDP) technique showcases remarkable efficiency
in memory utilization, especially notable when employed with
the ResNet18 architecture. These experiments reveal a substan-
tial reduction in peak GPU memory consumption, plummeting
to a mere 0.27 GB with FSDP implementation. While FSDP does



Comparative Analysis of Standard Image Classification Model Training Techniques with FSDP

Table 1: Comparison of Results Across Configurations

Metric Baseline with 1 GPU Baseling with 2 GPUs FSDP with 2 GPUs

GPU Memory Utilization
ResNet-18 0.13 GB 0.13 GB GPU0: 0.04 GB
MobileNet-v2 0.03 GB 0.03 GB GPU0: 0.03 GB

GPU Peak Memory
ResNet-18 0.74 GB 0.74 GB GPU0: 0.27 GB
MobileNet-v2 0.24 GB 0.24 GB GPU0: 0.21 GB

Average Time Per Epoch (sec)
ResNet-18 30.23 44.07 32
MobileNet-v2 34.12 48.46 35

Total Time Taken (sec)
ResNet-18 906.825 1337.46 1005.49
MobileNet-v2 1023.64 1453.754 1135.67

Accuracy (%)
ResNet-18 71.06 69.16 78.8
MobileNet-v2 52 50 53.6

not inherently bolster model accuracy, it consistently maintains
performance at a competitive level. Moreover, integrating FSDP
into our framework yields a noteworthy reduction in total execu-
tion time, contributing to accelerated model training and inference
processes compared to configurations without FSDP. Across these
evaluations, FSDP emerges as the top performer, demonstrating
its efficacy in optimizing both training and inference workflows.
Notably, the results underscore that the Baseline model with one
GPU achieves the next best performance, followed by the Baseline
with two GPUs. These findings emphasize that merely adding more
GPUs does not guarantee a linear improvement in performance, as
factors such as communication overhead and parallel processing
inefficiencies come into play. Consequently, employing sharding
techniques proves to be a judicious choice in enhancing overall
system efficiency.

5 CONCLUSION
In conclusion, this study has provided a comprehensive analysis of
PyTorch’s Fully Sharded Data Parallel (FSDP) technique in compar-
ison to traditional image classification model training techniques.
Through experiments conducted on the CIFAR-10 dataset using
MobileNetV2 and ResNet architectures, several key findings have
emerged. Firstly, FSDP demonstrates remarkable efficiency in mem-
ory utilization and peak GPU memory consumption. While FSDP
does not inherently improve model accuracy, it consistently main-
tains competitive performance levels. Moreover, integrating FSDP
into the training framework leads to notable reductions in total
execution time, accelerating both training and inference processes.
These results underscore the efficacy of FSDP in optimizing training
workflows for large-scale models that wouldn’t fit on a single GPU.

6 FUTUREWORK
Despite the promising findings of this study, there remain several
avenues for future research and development. Firstly, further ex-
ploration is warranted into the integration of FSDP with other

parallelism techniques, such as pipeline parallelism, to enhance its
scalability and efficiency further. Additionally, investigating FSDP’s
applicability across different domains beyond image classification,
such as natural language processing (NLP) and reinforcement learn-
ing, could unveil its broader impact and potential. Furthermore,
conducting longitudinal studies to assess FSDP’s performance and
scalability as model sizes continue to grow would provide valuable
insights into its long-term effectiveness. Overall, the continued
refinement and extension of FSDP hold promise for advancing
distributed training frameworks and facilitating the training of
increasingly complex AI models.

REFERENCES
[1] Aaron Archer, Matthew Fahrbach, Kuikui Liu, and Prakash Prabhu. 2023.

Pipeline Parallelism for DNN Inference with Practical Performance Guarantees.
arXiv:2311.03703 [cs.LG]

[2] A. Babsha, Y. You, M. Li, J. Joneja, and Y. Huang. 2023. DeepSpeed: System Design
for Large Model Training. (2023). arXiv:2301.02691 [cs.DC]

[3] Y. Huang, S. Li, Y. Cheng, C. Bao, S. Li, L. Chen, and et al. 2023. Fully Sharded
Data Parallel (FSDP) for Efficient Large Model Training on GPUs. (2023).
arXiv:2304.11277 [cs.LG]

[4] Kabir Nagrecha. 2023. Systems for Parallel and Distributed Large-Model Deep
Learning Training. arXiv:2301.02691 [cs.DC]

[5] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020.
ZeRO: Memory Optimizations Toward Training Trillion Parameter Models.
arXiv:1910.02054 [cs.LG]

[6] Christopher J. Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy
Frostig, and George E. Dahl. 2019. Measuring the Effects of Data Parallelism on
Neural Network Training. arXiv:1811.03600 [cs.LG]

[7] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Ra-
jbhandari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Ko-
rthikanti, Elton Zhang, Rewon Child, Reza Yazdani Aminabadi, Julie Bernauer, Xia
Song, Mohammad Shoeybi, Yuxiong He, Michael Houston, Saurabh Tiwary, and
Bryan Catanzaro. 2022. Using DeepSpeed andMegatron to Train Megatron-Turing
NLG 530B, A Large-Scale Generative Language Model. arXiv:2201.11990 [cs.CL]

https://arxiv.org/abs/2311.03703
https://arxiv.org/abs/2301.02691
https://arxiv.org/abs/2304.11277
https://arxiv.org/abs/2301.02691
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1811.03600
https://arxiv.org/abs/2201.11990

	Abstract
	1 Introduction
	2 Related Work
	3 Experimental Setup
	3.1 Method
	3.2 Data
	3.3 Environment Setup

	4 Results
	5 Conclusion
	6 Future Work
	References

